A weighted weak-type inequality for the one-sided maximal operators
Abstract
UDC 517.5
We obtain some necessary and sufficient conditions for a weighted weak-type inequality of the form $$\int\limits_{\{M_g^{+}(f)>\lambda\}}\widetilde{\varphi}\left(\frac{\lambda}{\omega_{3}(x)\omega_{4}(x)}\right)\omega_{4}(x)\,dx\leq C_1\int\limits_{-\infty}^{+\infty}\widetilde{\varphi}\left(C_{1}\frac{|f(x)|}{\omega_{1}(x)\omega_{2}(x)}\right)\omega_{2}(x)\,dx$$ to be true, which generalize some known results.
References
E. Sawyer, Weighted inequalities for the one-sided Hardy–Littlewood maximal functions, Trans. Amer. Math. Soc., 297, № 1, 53–61 (1986). DOI: https://doi.org/10.1090/S0002-9947-1986-0849466-0
F. J. Martín-Reyes, P. Ortega Salvador, A. De la Torre, Weighted inequalities for the one-sided maximal functions, Trans. Amer. Math. Soc., 319, № 2, 517–534 (1990). DOI: https://doi.org/10.1090/S0002-9947-1990-0986694-9
V. Kokilashvili, M. Krbec, Weighted inequalities in Lorentz and Orlicz spaces, World Sci. Publ., Singapore (1991). DOI: https://doi.org/10.1142/1367
P. Ortega Salvador, L. Pick, Two-weight weak and extra-weak type inequalities for the one-sided maximal operator, Proc. Roy. Soc. Fdinburgh Sect. A, 123, № 6, 1109–1118 (1993). DOI: https://doi.org/10.1017/S0308210500029760
F. J. Martín-Reyes, New proofs of weighted inequalities for the one-sided Hardy–Littlewood maximal functions, Proc. Amer. Math. Soc., 117, № 3, 691–698 (1993). DOI: https://doi.org/10.1090/S0002-9939-1993-1111435-2
A. Gogatishvili, V. Kokilashvili, Criteria of weighted inequalities in Orlicz classes for maximal functions defined on homogeneous type spaces, Georgian Math. J., 1, № 6, 641–673 (1994). DOI: https://doi.org/10.1007/BF02254684
Q. Lai, Two-weight mixed $Phi$-inequalities for the one-sided maximal function, Studia Math., 115, № 1, 1–22 (1995). DOI: https://doi.org/10.4064/sm-115-1-1-22
Q. Lai, A note on the weighted norm inequality for the one-sided maximal operator, Proc. Amer. Math. Soc., 124, № 2, 527–537 (1996). DOI: https://doi.org/10.1090/S0002-9939-96-03099-7
P. Ortega Salvador, Weighted inequalities for one-sided maximal functions in Orlicz spaces, Studia Math., 131, № 2, 101–114 (1998). DOI: https://doi.org/10.4064/sm-131-2-101-114
M. S. Riveros, A. De la Torre, Norm inequalities relating one-sided singular integrals and the one-sided maximal function, J. Aust. Math. Soc., 69, № 3, 403–414 (2000). DOI: https://doi.org/10.1017/S1446788700002524
S. Ombrosi, Weak weighted inequalities for a dyadic one-sided maximal function in $R^n$, Proc. Amer. Math. Soc., 133, № 6, 1769–1775 (2005). DOI: https://doi.org/10.1090/S0002-9939-05-07830-5
P. Ortega Salvador, C. Ramírez Torreblanca, Weighted inequalities for the one-sided geometric maximal operators, Math. Nachr., 284, № 12, 1515–1522 (2011). DOI: https://doi.org/10.1002/mana.200910028
L. Forzani, F. J. Martín-Reyes, S. Ombrosi, Weighted inequalities for the two-dimensional one-sided Hardy–Littlewood maximal function, Trans. Amer. Math. Soc., 363, № 4, 1699–1719 (2011). DOI: https://doi.org/10.1090/S0002-9947-2010-05343-7
M. Lorente, F. J. Martín-Reyes, The one-sided dyadic Hardy–Littlewood maximal operator, Proc. Roy. Soc. Edinburgh Sect. A, 144, № 5, 991–1006 (2014). DOI: https://doi.org/10.1017/S0308210512001527
F. J. Martín-Reyes, A. De la Torre, Sharp weighted bounds for one-sided maximal operators, Collect. Math., 66, № 2, 161–174 (2015). DOI: https://doi.org/10.1007/s13348-015-0132-4
S. Ding, Y. B. Ren, Criteria of a multi-weight weak type inequality in Orlicz classes for maximal functions defined on homogeneous type spaces, Acta Math. Hungar., 162, № 2, 677–689 (2020). DOI: https://doi.org/10.1007/s10474-020-01050-5
Copyright (c) 2023 Jing Wang
This work is licensed under a Creative Commons Attribution 4.0 International License.