A stochastic interpretation of the parametrix method
Abstract
UDC 519.21
We revisit, in a didactic manner and by using stochastic analysis, the parametrix method and its application to unbiased simulation. We consider, in particular, the case of one-dimensional diffusions without drift.
References
A. Ancona, K. Elworthy, M. Emery, H. Kunita, Stochastic differential geometry at saint-flour, Probab. St.-Flour, Springer etc. (2012); https://books.google.co.jp/books?id=nlCeMQEACAAJ.
P. Andersson, A. Kohatsu-Higa, Unbiased simulation of stochastic differential equations using parametrix expansions, Bernoulli, 23, № 3, 2028–2057 (2016). DOI: https://doi.org/10.3150/16-BEJ803
P. Andersson, A. Kohatsu-Higa, T. Yuasa, Second order probabilistic parametrix method for unbiased simulation of stochastic differential equations, Stochast. Process. and Appl., 130, № 9, 5543–5574 (2020); DOI: 10.1016/ j.spa.2020.03.016; https://ideas. repec.org/a/eee/spapps/v130y2020i9p5543-5574.html. DOI: https://doi.org/10.1016/j.spa.2020.03.016
R. F. Bass, E. A. Perkins, On uniqueness in law for parabolic SPDEs and infinite-dimensional SDEs, Electron. J. Probab., 17, № 36, 1–54 (2012); DOI: 10.1214/EJP.v17-2049; https://doi.org/10.1214/EJP.v17-2049. DOI: https://doi.org/10.1214/EJP.v17-2049
S. Bodnarchuk, D. Ivanenko, A. Kohatsu-Higa, A. Kulik, Improved local approximation for multidimensional diffusions: the $g$-rates, Theory Probab. and Math. Statist., 101, № 1 (2021); DOI: 10.1090/tpms/1109. DOI: https://doi.org/10.1090/tpms/1109
P.-E. Chaudru de Raynal, N. Frikha, Well-posedness for some non-linear SDEs and related PDE on the Wasserstein space, J. Math. Pures et Appl., 159, 1–167 (2022); DOI: https://doi.org/10.1016/j.matpur.2021.12.001; https://www.sciencedirect.com/science/article/pii/ S0021782421001884. DOI: https://doi.org/10.1016/j.matpur.2021.12.001
F. Delarue, Estimates of the solutions of a system of quasi-linear PDEs. A probabilistic scheme, Sémin. Probab. XXXVII, Lecture Notes in Math., 1832, 290–332 (2003); DOI: 10.1007/978-3-540-40004-2_12; https://doi.org/ 10.1007/978-3-540-40004-2_12. DOI: https://doi.org/10.1007/978-3-540-40004-2_12
A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, NJ (1964).
N. Frikha, L. Li, Weak uniqueness and density estimates for SDEs with coefficients depending on some path-functionals, Ann. Inst. Henri Poincaré, Probab. et Stat., 56, № 2, 1002–1040 (2020); DOI: 10.1214/19-AIHP992; https://doi.org/10.1214/19-AIHP992. DOI: https://doi.org/10.1214/19-AIHP992
I. Karatzas, S. Shreve, Brownian motion and stochastic calculus, Grad. Texts in Math., Springer-Verlag (1988); https://books.google.co.jp/books?id=uxnvAAAAMAAJ. DOI: https://doi.org/10.1007/978-1-4684-0302-2
I. Karatzas, S. E. Shreve, Brownian motion and stochastic calculus, Grad. Texts in Math., 113, Springer-Verlag, New York (1991); DOI: 10.1007/978-1-4612-0949-2; http://dx.doi.org/10.1007/ 978-1-4612-0949-2.
T. Kulczycki, A. M. Kulik, M. Ryznar, On weak solution of SDE driven by inhomogeneous singular Lévy noise, Trans. Amer. Math. Soc., 375, 4567–4618 (2022). DOI: https://doi.org/10.1090/tran/8612
E. E. Levi, Sulle equazioni lineari alle derivate parziali totalmente ellittiche, Rend. Real. Accad. Lincei, Cl. Sci., Fis., Mat., Natur. (5), 16, № 12, 932–938 (1907).
E. E. Levi, Sulle equazioni lineari totalmente ellittiche alle derivate parziali, Rend. Circ. Mat. Palermo, 24, № 1, 275–317 (1907). DOI: https://doi.org/10.1007/BF03015067
P. Protter, Stochastic integration and differential equations, Stochastic Modelling and Applied Probability, Springer, Berlin, Heidelberg (2003).
S. Watanabe, Stochastic Levi sums, Commun. Pure and Appl. Math., 47, № 5, 767–786 (1994); DOI: https://doi.org/ 10.1002/cpa.3160470509; https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.3160470509. DOI: https://doi.org/10.1002/cpa.3160470509
Copyright (c) 2023 Георгій Валентинович Рябов
This work is licensed under a Creative Commons Attribution 4.0 International License.