On the $F$-Bernstein polynomials

  • Alper Erdem Department of Mathematics, Mersin University, Turkey
  • Orhan Dişkaya Department of Mathematics, Mersin University, Turkey
  • Hamza Menken Department of Mathematics, Mersin University, Turkey
Keywords: Fibonacci numbers, Bernstein polynomials

Abstract

UDC 517.5

We construct a new Bernstein operator, which is called the $F$-Bernstein operator obtained by using the $F$-factorial (Fibonacci factorial) and the Fibonomial (Fibonacci binomial). Then we examine the $F$-Bernstein basis polynomials and some of their properties. Moreover, we acquire certain connection between the $F$-Bernstein polynomials and the Fibonacci numbers.  

References

M. Acikgoz, S.Araci, On the generating function for Bernstein polynomials, AIP Conf. Proc., 1281, № 1, 1141–1143 (2010). DOI: https://doi.org/10.1063/1.3497855

E. Agyuz, M. Acikgoz, A note on $(p, q)$-Bernstein polynomials and their applications based on $(p, q) $-calculus, J. Inequal. and Appl., 1, 1–12 (2018). DOI: https://doi.org/10.1186/s13660-018-1673-3

A. T. Benjamin, J. J. Quinn, Proofs that really count: the art of combinatorial proof, vol. 27, Amer. Math. Soc. (2003). DOI: https://doi.org/10.5948/9781614442080

H. W. Gould, The bracket function and Fonten–Ward generalized binomial coefficients with application to Fibonomial coefficients, Fibonacci Quart., 7, 23–40 (1969).

T. Kim, A note on $q$-Bernstein polynomials, Russ. J. Math. Phys., 18, № 1, 73–82 (2011). DOI: https://doi.org/10.1134/S1061920811010080

T. Koshy, Fibonacci and Lucas numbers with applications, vol. 1, John Wiley & Sons (2018).

T. Koshy, Fibonacci and Lucas numbers with applications, vol. 2, John Wiley & Sons (2019). DOI: https://doi.org/10.1002/9781118742297

E. Krot, An introduction to finite fibonomial calculus, Open Math., 2, № 5, 754–766 (2004). DOI: https://doi.org/10.2478/BF02475975

S. Kuş, N. Tuglu, T. Kim, Bernoulli $F$-polynomials and Fibo–Bernoulli matrices, Adv. Difference Equat., 1, 1–16 (2019). DOI: https://doi.org/10.1186/s13662-019-2084-6

M. Mursaleen, K. J. Ansari, A. Khan, On $(p,q)$-analogue of Bernstein operators, Appl. Math. and Comput., 266, 874–882 (2015). DOI: https://doi.org/10.1016/j.amc.2015.04.090

H. Oruş, G. M. Phillips, $q$-Bernstein polynomials and B'ezier curves, J. Comput. and Appl. Math., 151, № 1, 1–12 (2003). DOI: https://doi.org/10.1016/S0377-0427(02)00733-1

H. Oruş, N. Tuncer, On the convergence and iterates of $q$-Bernstein polynomial, J. Approx. Theory, 117, № 2, 301–313 (2002). DOI: https://doi.org/10.1006/jath.2002.3703

H. Oruş, G. M. Phillips, P. J. Davis, A generalization of the Bernstein polynomials, Proc. Edinburgh Math. Soc., 42, № 2, 403–413 (1999). DOI: https://doi.org/10.1017/S0013091500020332

S. Ostrovska, $q$-Bernstein polynomials and their iterates, J. Approx. Theory, 123, № 2, 232–255 (2003). DOI: https://doi.org/10.1016/S0021-9045(03)00104-7

M. Ozvatan, Generalized golden-Fibonacci calculus and applications, Master's Thesis, Izmir Institute of Technology (2018).

O. K. Pashaev, S. Nalci, Golden quantum oscillator and Binet–Fibonacci calculus, J. Phys. A, 45, № 1, Article 015303 (2011). DOI: https://doi.org/10.1088/1751-8113/45/1/015303

G. M. Phillips, On generalized Bernstein polynomials, Numerical Analysis: AR Mitchell 75th Birthday Volume (1996), p. 263–269. DOI: https://doi.org/10.1142/9789812812872_0018

G. M. Phillips, A survey of results on the $q$-Bernstein polynomials, IMA J. Numer. Anal., 30, № 1, 277–288 (2010). DOI: https://doi.org/10.1093/imanum/drn088

Published
03.07.2024
How to Cite
ErdemA., DişkayaO., and MenkenH. “On the $F$-Bernstein Polynomials”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 6, July 2024, pp. 832–842, doi:10.3842/umzh.v76i5.7439.
Section
Research articles