Sharp starlike and convex radius for the differential operator of analytic functions

  • Zhenyong Hu School of Mathematics and Statistics, Zhoukou Normal University, China
  • H. M. Srivastava Department of Mathematics and Statistics, University of Victoria, British Columbia, Canada; Center for Converging Humanities, Kyung Hee University, Republic of Korea; Department of Mathematics and Informatics, Azerbaijan University, Baku, Azerbaijan, and Section of Mathematics, International Telematic University Uninettuno, Rome, Italy
  • Ying Zhang School of Mathematics and Statistics, Xinyang College, China
Keywords: analytic functions; starlike functions; convex functions; differential operator.

Abstract

UDC 517.5

Under given coefficient conditions for analytic functions $f$ in the unit disk $\mathbf{D}$, we first obtain the starlike and convex radius  for the linear  combination of the differential operator  $zf'$ of analytic functions $f$ in $\mathbf{D}.$ Then we obtain the starlike and convex radius  for the differential operator  $zf'$.  Furthermore, we present the starlike and convex radius  for the linear  combination of the differential operator  $zf'$  and analytic functions  $f$ in $\mathbf{D}$.  Our results imply the related result obtained by Gavrilov [Mat. Zametki, 7, 295–298 (1970)].

References

R. M. Ali, M. M. Nargesi, V. Ravichandran, Radius constant for analytic functions with fixed second coefficient, Sci. World J., 2014, Article ID 898614 (2014). DOI: https://doi.org/10.1155/2014/898614

R. M. Ali, N. E. Cho, N. K. Jain, V. Ravichandran, Radii of starlikeness and convexity for functions with fixed second coefficient defined by subordination, Filomat, 26, № 3, 553–561 (2012). DOI: https://doi.org/10.2298/FIL1203553A

R. M. Ali, N. K. Jain, V. Ravichandran, Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane, Appl. Math. and Comput., 218, № 11, 6557–6565 (2012). DOI: https://doi.org/10.1016/j.amc.2011.12.033

R. M. Ali, N. K. Jain, V. Ravichandran, On the radius constants for classes of analytic functions, Bull. Malays. Math. Sci. Soc., 36, № 2, 23–38 (2013).

R. Mendiratta, S. Nagpal, V. Ravichandran, Radii of starlikeness and convexity for analytic functions with fixed second coefficient satisfying certain coefficient inequalities, Kyungpook Math. J., 55, № 3, 395–410 (2015). DOI: https://doi.org/10.5666/KMJ.2015.55.2.395

R. M. Ali, V. Kumar, V. Ravichandran, S. S. Kumar, Radius of starlikeness for analytic functions with fixed second coefficient, Kyungpook Math. J., 57, № 3, 473–492 (2017).

L. de Branges, A proof of the Bieberbach conjecture, Acta Math., 154, № 1-2, 137–152 (1985). DOI: https://doi.org/10.1007/BF02392821

D. M. Campbell, A survey of properties of the convex combination of univalent functions, Rocky Mountain J. Math., 5, № 4, 475–492 (1975). DOI: https://doi.org/10.1216/RMJ-1975-5-4-475

P. L. Duren, Univalent functions, Springer-Verlag, New York etc. (1983).

P. Garabedian, M. Schiffer, A proof of the Bieberbach conjecture for the fourth coefficient, J. Ration. Mech. and Anal., 4, 427–465 (1955). DOI: https://doi.org/10.1512/iumj.1955.4.54012

V. I. Gavrilov, Remarks on the radius of univalence of holomorphic functions, Mat. Zametki, 7, 295–298 (1970). DOI: https://doi.org/10.1007/BF01093109

A. W. Goodman, Univalent functions, Mariner, Tampa (1983).

C. Loewner, Üntersuchungen uber schlichte konforme Abbildungen des Einheitskreises I, Math. Ann., 176, 61–94 (1923).

E. P. Merkes, On the convex sum of certain univalent functions and the identity function, Rev. Colombiana Mat., 21, № 1, 5–11 (1987).

R. N. Pederson, A proof of the Bieberbach conjecture for the sixth coefficient, Arch. Ration. Mech. and Anal., 31, 331–351 (1968). DOI: https://doi.org/10.1007/BF00251415

B. N. Rahmanov, On the theory of univalent functions, Dokl. Akad. Nauk SSSR (N.S.), 82, 341–344 (1952).

B. N. Rahmanov, On the theory of univalent functions, Dokl. Akad. Nauk SSSR (N.S.), 88, 413–414 (1953).

V. Ravichandran, Radii of starlikeness and convexity of analytic functions satisfying certain coefficient inequalities, Math. Slovaca, 64, № 1, 27–38 (2014). DOI: https://doi.org/10.2478/s12175-013-0184-4

G. S. Salagean, Subclasses of univalent functions, Lecture Notes in Math., 1013, 362–372 (1983). DOI: https://doi.org/10.1007/BFb0066543

S. Yamashita, Radii of univalence, starlikeness, and convexity, Bull. Austral. Math. Soc., 25, № 3, 453–457 (1982). DOI: https://doi.org/10.1017/S0004972700005499

Published
31.10.2024
How to Cite
HuZ., SrivastavaH. M., and ZhangY. “Sharp Starlike and Convex Radius for the Differential Operator of Analytic Functions”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 10, Oct. 2024, pp. 1455 -62, doi:10.3842/umzh.v76i10.7788.
Section
Research articles