Construction of orthogonal starters and its consequences
Abstract
A method is proposed for constructing a system of (v−1)/2 pairwise disjoint orthogonal starters of order v for v ≡ 6k+1 ≡ 7 (mod 12) ≡ p ≡ (n2+n+1)/t such that the number 3 is one of the primitive roots of the Galois field of prime order p (k is prime, k ≠ 2, and n and t are positive integers). The starters occurring in this system satisfy certain additional conditions. The construction of a series of combinatorial structures, including some not previously known, is a consequence of this result.
References
Wallis W. D., Street А. Р., Wallis J. S. Combinatorics: Room squares, sum-free sets, Hadamard matrices.— Berlin: Springer, 1972.— 322 p.
Stinson D. P. Some results concerning frames, Room squares, and subsquares // Austral. Math. Soc. Ser. A.— 1981.— 31.— P. 376—384.
Mendelsohn E., Rosa A. One-factorizations of the complete graph-a survey//J. Graph Theory.— 1985.— 9.— P. 43—65.
Rosa A., Stinson D. R. One factorizations of regular graphs and Howell designs of small order // Util. math.— 1986.— 29.— P. 99—124.
Stinson D. R. On the existence of skew Room frames of type 2n // Ars Combinatoria.— 1987.—24.—P. 115—128.
Lamken E. R. A note on partitioned balanced tournament designs // Ibid.— P. 5—16.
Lamken E. R. On classes of doubly resolvable (v, 3,2)-BIBDs from balanced tournament designs // Ibid.— P. 85—91.
Lamken E. R., Vanstone S. A. Balanced tournament designs and related topics // Discrete Math.— 1989.— 77.— P. 159—176.
Lamken E. R. A note on indecomposable Kirkman squares //Ars Combinatoria.— 1990.— 29.—P. 161 —167.
Dinitz J. H. Room n-cubes of low order // J. Austral. Math. Soc. Ser. A.— 1984.— 36, N 2.— P. 237—252.
Stinson D. R., Vanstone S. A. A Kirkman square of order 51 and block size 3// Discrete Math.— 1985.— 55, N 1.—P. 107—111.
Du Ding-Zhu, Hsu F. D. Partitionable starters for twin prime power type // Ibid.— 1991.— 87, N 1.— P. 23—28.
Heffter L. Uber tripelsysteme//Math. Ann.— 1987.— 49.— P. 101—112.
Виноградов И. M. Основы теории чисел.— М. : Наука, 1965.— 172 с.
Gzoss К. В., Mullin R. С., Wallis W. G. The number of pairwise orthogonal symmetric latin squares// Util. math.— 1973.— 4.— P. 239 — 251.