Degenerations of 3-dimensional nilpotent associative algebras over an algebraically closed field
Abstract
UDC 512.5+514
We determine the complete degeneration picture inside the variety of nilpotent associative algebras of dimension three over an algebraically closed field. As compared with the discussion in [N. M. Ivanova, C. A. Pallikaros, Adv. Group Theory and Appl., 18, 41-79 (2024)], for some arguments in the present article, it is necessary to develop alternative techniques, which are now valid over an arbitrary algebraically closed field. There is a dichotomy of cases concerning the obtained results corresponding to the cases where the characteristic of the field is $2$ or not.
References
Y. Agaoka, On the variety of 3-dimensional Lie algebras, Lobachevskii J. Math., 3, 5–17 (1999).
D. Burde, C. Steinhoff, Classification of orbit closures of 4-dimensional complex Lie algebras, J. Algebra, 214, 729–739 (1999). DOI: https://doi.org/10.1006/jabr.1998.7714
W. de Graaf, Classification of nilpotent associative algebras of small dimension, Int. J. Algebra and Comput., 28, 133–161 (2018). DOI: https://doi.org/10.1142/S0218196718500078
M. Geck, An introduction to algebraic geometry and algebraic groups, Oxford Univ. Press (2003). DOI: https://doi.org/10.1093/oso/9780198528319.001.0001
E. Inönü, E. P. Wigner, On the contraction of groups and their representations, Proc. Nat. Acad. Sci. USA, 39, 510–524 (1953). DOI: https://doi.org/10.1073/pnas.39.6.510
E. Inönü, E. P. Wigner, On a particular type of convergence to a singular matrix, Proc. Nat. Acad. Sci. USA, 40, 119–121 (1954). DOI: https://doi.org/10.1073/pnas.40.2.119
N. M. Ivanova, C. A. Pallikaros, On degenerations of algebras over an arbitrary field, Adv. Group Theory and Appl., 7, 39–83 (2019).
N. M. Ivanova, C. A. Pallikaros, Describing certain Lie algebra orbits via polynomial equations, Pr. Inst. Mat. Nats. Akad. Nauk Ukr., 16, 84–99 (2019).
N. M. Ivanova, C. A. Pallikaros, Degenerations of complex associative algebras of dimension three via Lie and Jordan algebras, Adv. Group Theory and Appl., 18, 41–79 (2024).
R. L. Kruse, D. T. Price, Nilpotent rings, Gordon and Breach Sci. Publ., New York etc. (1969).
M. Nesterenko, R. Popovych, Contractions of low-dimensional Lie algebras, J. Math. Phys., 47, Article 123515 (2006). DOI: https://doi.org/10.1063/1.2400834
C. A. Pallikaros, H. N. Ward, Linear degenerations of algebras and certain representations of the general linear group, Comm. Algebra, 50, 4122–4144 (2022). DOI: https://doi.org/10.1080/00927872.2022.2029874
I. E. Segal, A class of operator algebras determined by groups, Duke Math J., 18, 221–265 (1951). DOI: https://doi.org/10.1215/S0012-7094-51-01817-0
H. N. Ward, Degenerations and contractions of algebras and forms; arXiv:2304.08305.
Copyright (c) 2024 Christakis Pallikaros
This work is licensed under a Creative Commons Attribution 4.0 International License.