On a subclass of starlike functions associated with a strip domain
Abstract
UDC 517.5
We introduce a new subclass of starlike functions defined as $\mathcal{S}^{*}_{\tau}:=\{f\in \mathcal{A}:zf'(z)/f(z) \prec 1+\arctan z=:\tau(z)\},$ where $\tau(z)$ maps the unit disk $\mathbb {D}:= \{z\in \mathbb{C}:|z|<1\}$ onto a strip domain. We deduce structural formulas, as well as the growth and distortion theorems for $\mathcal{S}^{*}_{\tau}.$ In addition, inclusion relations with some well-known subclasses of $\mathcal{S}$ are established and sharp radius estimates are obtained, as well as the sharp coefficient bounds for the initial five coefficients and the second and third order Hankel determinants of $\mathcal{S}^{*}_{\tau}.$
References
W. Ma, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, 1992, International Press Inc. (1992).
W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math., 2, 159–177 (1970).
J. Sokół, J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 19, 101–105 (1996).
K. Sharma, N. K. Jain, V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat., 27, 923–939 (2016).
R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malays. Math. Sci. Soc., 38, 365–386 (2015).
R. K. Raina, J. Sokół, Some properties related to a certain class of starlike functions, Comptes Rend. Math., 353, № 11, 973–978 (2015).
P. Goel, S. S. Kumar, Certain class of starlike functions associated with modi ed sigmoid function, Bull. Malays. Math. Sci. Soc., 43, № 1, 957–991 (2020).
S. S. Kumar, G. Kamaljeet, A cardioid domain and starlike functions, Anal. and Math. Phys., 11, № 2, 1–34 (2021).
A. K. Bakhtin, I. V. Denega, Extremal decomposition of the complex plane with free poles, J. Math. Sci., 246, № 1, 1–18 (2020).
A. K. Bakhtin, I. V. Denega, Generalized M. A. Lavrentiev’s inequality, J. Math. Sci., 262, № 2, 138–153 (2022).
I. Denega, Y. V. Zabolotnyi, Application of upper estimates for products of inner radii to distortion theorems for univalent functions, Mat. Stud., 60, № 2, 138–144 (2023).
O. S. Kwon, Y. J. Sim, N. E. Cho, H. Srivastava, Some radius problems related to a certain subclass of analytic functions, Acta Math. Sinica (Engl. Ser.), 30, № 7, 1133–1144 (2014).
O. S. Kwon, Y. J. Sim, On coefficient problems for starlike functions related to vertical strip domains, Commun. Korean Math. Soc., 34, № 2, 451–464 (2019).
H. Mahzoon, J. Sokól, New subclass of close-to-convex functions associated with the vertical strip domains, Iran. J. Math. Sci. and Inform., 18, № 2, 199–210 (2023).
K. Kuroki, S. Owa, Notes on new class for certain analytic functions, Adv. Math., 1, № 2, 127–131 (2012).
R. Kargar, A. Ebadian, J. Sokół, Radius problems for some subclasses of analytic functions, Complex Anal. and Oper. Theory, 11, 1639–1649 (2017).
Y. Sun, Z.-G. Wang, A. Rasila, J. Sokoł, On a subclass of starlike functions associated with a vertical strip domain, J. Inequal. and Appl., 2019, 1–14 (2019).
B. Uralegaddi, M. Ganigi, S. Sarangi, Radius problems in the class ${SL}^*$, Appl. Math. and Commun., 214, № 2, 569–573 (2009).
B. Uralegaddi, M. Ganigi, S. Sarangi, Univalent functions with positive coefficients, Tamkang J. Math., 25, № 3, 225–230 (1994).
V. Ravichandran, S. S. Kumar, Argument estimate for starlike functions of reciprocal order, Southeast Asian Bull. Math., 35, № 5, 837–843 (2011).
S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. and Appl. Math., 105, № 1-2, 327–336 (1999).
A. W. Goodman, Univalent functions, vol. 1, Mariner Publ. Co., Tampa, Fl (1983).
M. Raza, D. Thomas, A. Riaz, Coefficient estimates for starlike and convex functions related to sigmoid functions, Ukr. Math. J., 75, № 5, 683–697 (2023).
R.J. Libera, E. J. Złotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85, № 2, 225–230 (1982).
D. Prokhorov, J. Szynal, Inverse coefficients for $(α,β)$-convex functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A, 35, 125–143 (1984).
S. Sivaprasad Kumar, S. Banga, On a special type of non-Ma–Minda function; arXiv e-prints, pp.arXiv-2006 (2022).
C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc., 1, № 1, 111–122 (1966).
O. S. Kwon, A. Lecko, Y. J. Sim, On the fourth coefficient of functions in the Carathéodory class, Comput. Methods and Funct. Theory, 18, 307–314 (2018).
S. Banga, S. Sivaprasad Kumar, The sharp bounds of the second and third Hankel determinants for the class ${SL}^*$, Math. Slovaca, 70, № 4, 849–862 (2020).
N. Verma, S. S. Kumar, A conjecture on $H_3(1)$ for certain starlike functions, Math. Slovaca, 73, № 5, 1197–1206 (2023).
N. Verma, S. S. Kumar, Sharp third Hankel determinant bound for ${S}^{*}(α)$; arXiv e-prints, pp.arXiv:2211.14527 (2022).
Copyright (c) 2024 Neha Verma
This work is licensed under a Creative Commons Attribution 4.0 International License.