Automatic continuity, bases and radicals in the metrized algebras
Abstract
The automatic continuity of a linear multiplicative operator T: X→Y, where X and Y are real complete metrizable algebras and Y semi-simple, is proved. It is shown that a complex Frechét algebra with absolute orthogonal basis (xi) (orthogonal in the sense that xixj=0 if i ≠ j) is a commutative symmetric involution algebra. Hence, we are able to derive the well-known result that every multiplicative linear functional defined on such an algebra is continuous. The concept of an orthogonal Markushevich basis in a topological algebra is introduced and is applied to show that, given an arbitrary closed subspace Y of a separable Banach space X, a commutative multiplicative operation whose radical is Y may be introduced on X. A theorem demonstrating the automatic continuity of positive functionals is proved.
References
Husain Т. Multiplicative functionals on topological algebras // Reaserch Notes in Math.— 85.— Boston: Pitman, 1983.— 143 p.
Husain T., Shu-Bun Ng. On continuity of algebra homomorfisms and uniqueness of metric topology // Math. Z.— 1974.— 139.— P. 1—4.
Петунин Ю. И., Погребной В. Д. Некоторые вопросы вложения фактор-пространств и банаховых алгебр // Укр. мат. журн.— 1985.— 37, № 1.— С. 87—93.
Gregory F., Saeki S. Banach algebras with uncomplemented radical //Proc. Amer. Math. Soc.— 1987.— 100, N 2.—P. 271—274.
Pelczyhski A. All separable Banach spaces admit for every ε > 0 fundamental total and bounded by 1 + ε biorthogonal sequences // Stud. Math.— 1976.— 55, N 3.— P. 295— 304.
Кадец M. И., Митягин Б. С. Дополняемые подпространства в банаховых пространствах // Успехи мат. наук.— 1973.— 28, № 6.— С. 77—94.
Sinclair А. М. Automatic continuity of linear operators//London Math. Soc. Leet. Notes. — 1976.—21.—P. 1—92.
Dixon P. G. Automatic continuity of positive functionals on topological involution algebras // Bull. Austral. Math. Soc.— 1981.— 23, N 2.— P. 265—281.
Godefroy G. Quelques proprietes des espaces de Banach // Semin. Choquet initiat. anal. Univ. Pierre et Marie Curie.— 1974-75.— 14.— C3/1—C 3/8.
Яковлев H. В. Примеры банаховых алгебр с радикалом, недополняемым как банахово пространство // Успехи мат. наук.— 1989.— 44, № 5.— С. 185—186.