Remark to the evaluation of the distribution norm of white noise
Abstract
The description of the space $(S)*$ of white noise distributions is received in the terms of the $S$-transform well-known in the white noise analysis.
References
Hida T. Brownian motion.— Berlin etc.: Springer, 1980.— 304 p.
Potthoff J., Streit L. A characterization of Hida distributions.— BiBoS, 1989.— (Preprint / Univ. Bielefeld; 406).
Hida T., Potthoff J., Streit L. White noise : An infinite dimensional calculus.— (To appear).
Кондратьев Ю. Г. Ядерные пространства целых функций в задачах бесконечномерного анализа // Докл. АН СССР.— 1980.— 254, № 6.— С. 1325—1329.
Березанский Ю. М., Кондратьев Ю. Г. Спектральные методы в бесконечномерном анализе.— Киев : Наук, думка, 1988.— 680 с.
Lee Y.-J. A characterization of generalized functions of infinite-dimensional spaces and Bargmann — Segal analytic functions//Proc. conf. Gaussian Random Fields (Nagoya, Japan, 1990).— (To appear).
Nachbin L. Topologies on spaces of holomorphic mappings.— Berlin etc.: Springer, 1969.— 230 p.
Potthoff J., Streit L. Generalized Radom — Nikodim derivaties and Cameron — Martin theory // Proc. conf. Gaussian Random Fields (Nagoya, Japan, 1990).— (To appear).
Yan J.-A. A characterization of white noise functional.— BiBoS, 1991.— (Preprint/ Univ. Bielefeld).— (To appear).
Copyright (c) 1992 Yu. G. Kondratiev , L. Streit
This work is licensed under a Creative Commons Attribution 4.0 International License.