Behavior of subharmonic functions of slow growth outside exclusive sets

  • M. Zabolotskyy Lviv Ivan Franko National University
  • T. Zabolotskyy Lviv Ivan Franko National University

Abstract

UDC517.53

Let $v$ be a slowly growing function unbounded on $[0,\,+\infty),$ $u$ be subharmonic (in plane) function of zero order, $\mu$~be its Riesz measure, $n(t,u)=\mu(\{x\colon |x|\le t\}),$ $N(t,u)=\int_{1}^{t}n(\tau,u)/\tau d\tau,$ and $n(r,u)=O(v(r)),$ $r\to+\infty.$  A  set $E \in \mathbb{C}$ is called a $C_0^\beta$-set, $0 < \beta \le 1,$ if $E$ can be covered by a system of disks $K(a_n,r_n)=\{z\colon |z-a_n| < r_n\}$ such that $\sum_{|a_n| \le r} r_n^\beta = o(r^\beta),$ $r\to+\infty.$ Then, for every nondecreasing function  $\phi$ unbounded on $[0,\,+\infty),$  there exists a $C_0^\beta$-set $E$ such that \begin{equation*}u(z)=N(r,u)+o(\phi(r)v(r)),\qquad r=|z|\to+\infty,\quad z \notin E.\end{equation*} It is shown that, in this asymptotic formula, the remainder term $o(\phi(r)v(r))$ cannot be changed by $O(v(r)).$

References

A. A. Goldberg, I. V. Ostrovskii, Value distributions of meromorphic functions, Amer. Math. Soc., Providence, RI (2008).

E. Seneta, Regularly varying functions, Springer-Verlag, Berlin etc. (1976). DOI: https://doi.org/10.1007/BFb0079658

A. A. Goldberg, M. V. Zabolotskyy, Concentration index of a subharmonic function of zeroth order, Math. Notes, 34, № 1-2, 596–601 (1983). DOI: https://doi.org/10.1007/BF01141775

N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, Berlin etc. (1972). DOI: https://doi.org/10.1007/978-3-642-65183-0

Published
04.08.2024
How to Cite
ZabolotskyyM., and ZabolotskyyT. “Behavior of Subharmonic Functions of Slow Growth Outside Exclusive Sets”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 76, no. 7, Aug. 2024, pp. 986 -91, doi:10.3842/umzh.v76i7.8157.
Section
Research articles