Trivial differential equations in spaces $L_p, 0 < p< 1$
Abstract
A description of the set $X_p$ of all solutions of the trivial Cauchy problem in $L_p, 0 < p< 1$ is presented. The principal result is Theorem 2, which asserts that $X_p$ is a closed subspace of the $p$ -Banach space $H_p$ of all curves in $L_p$ that satisfy a Hölder condition of order $р$ and emanate from relative to the $p$ -norm, which is equal to the minimal constant in the Hölder condition.
References
Rolewicz S. Metric linear spaces.— Warszawa: PWN, 1985.— 458 p.
Rolewicz S. О funkjach о pochodnej zero // Wiad. mat.— 1959.— 3.— P. 127—128.
Rolewicz S. Metric linear spaces.— Warszawa: PWN, 1972.— 287 p.
Kalioti N. J. Curves with zero derivatives in $F$-spaces// Glasgow Math. J.— 1981.— 22.— P. 19—29.
Copyright (c) 1992 L. V. Popova
This work is licensed under a Creative Commons Attribution 4.0 International License.