On the estimates of the rate of propagation of perturbations in quasilinear divergent degenerated parabolic equations of the high order

  • A. E. Shyshkov Ин-т прикл. математики и механики АН Украины, Донецк

Abstract

A method is given for obtaining integral growth lemmas for solutions of boundary problems for a large class of quasilinear evolution equations. As a possible application a sharp estimate is obtained of the dependence of the support of a solution of a mixed problem and a Cauchy problem for a quasilinear divergent parabolic equation on time.

References

Акулов В.Ф., Шишков Л.Е. Об асимптотических свойствах решений смешанных задач для квазилинейных параболических уравнений в неограниченных областях // Мат.сб.– 1991. –182, №8.–0.1200–1210.

Bernis F. Finite speed of propagation and asymptotic rates for some nonlinear higher order parabolic equations with absorption //Proc. Roy. Soc. Edinburgh.–1986.–104.–P.l–19.

Bernis F. Qualitative prorerties for some nonlinear higher order degenerate parabolic equations.–IMA Prepr.184. Univ. of Minnesota, 1985.

Мазья В.Г. Пространства Соболева.– Л.: Изд–во Ленингр. ун–та, 1985.–416с.

Published
01.10.1992
How to Cite
ShyshkovA. E. “On the Estimates of the Rate of Propagation of Perturbations in Quasilinear Divergent Degenerated Parabolic Equations of the High Order”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 44, no. 10, Oct. 1992, pp. 1451-6, https://umj.imath.kiev.ua/index.php/umj/article/view/8244.
Section
Research articles