$\varepsilon$-Isometries of convex bodies in $l^n_\infty$ and $l^n_1$
Abstract
UDC 517.5
It is shown that every $\varepsilon$-isometry of a convex body in $l^n_\infty$ or in $l^n_1$ can be well approximated by an affine surjective isometry.
References
Y. Benyamini, J. Lindenstrauss, Geometric nonlinear functional analysis, vol. 1, Colloquium Publication, 48, Amer. Math. Soc., Providence, RI (2000). DOI: https://doi.org/10.1090/coll/048
Th. M. Rassias, Properties of isometries and approximate isometries. Recent progress in inequalities (Niš, 1996), Math. Appl., 430, Kluwer Acad. Publ., Dordrecht (1998), p. 341–379. DOI: https://doi.org/10.1007/978-94-015-9086-0_19
Th. M. Rassias, Properties of isometric mappings, J. Math. Anal. and Appl., 235, 108–121 (1999). DOI: https://doi.org/10.1006/jmaa.1999.6363
I. A. Vestfrid, $ε$-isometries in Euclidean spaces, Nonlinear Anal., 63, 1191–1198 (2005). DOI: https://doi.org/10.1016/j.na.2005.05.036
I. A. Vestfrid, Addendum to``$ε$-Isometries in Euclidean spaces, [Nonlinear Anal., 63, 1191–1198 (2005)], Nonlinear Anal., 67, 1306–1307 (2007). DOI: https://doi.org/10.1016/j.na.2006.06.053
I. A. Vestfrid, $ε$-Isometries in $l^n_∞$, Nonlinear Funct. Anal. and Appl., 12, 433–438 (2007).
I. A. Vestfrid, $ε$-Isometries in $l^n_1$, Aequat. Math. (2024); https://doi.org/10.1007/s00010-023-01023-3. DOI: https://doi.org/10.1007/s00010-023-01023-3
Copyright (c) 2024 Igor A. Vestfrid
This work is licensed under a Creative Commons Attribution 4.0 International License.