Finiteness Properties of Minimax and a-Minimax Generalized Local Cohomology Modules

Authors

  • A. Kianezhad
  • A. J. Taherizadeh

Abstract

Let R be a commutative Noetherian ring with nonzero identity, let a be an ideal of R, and let M and N be two (finitely generated) R-modules. We prove that Hia(M,N) is a minimax a-cofinite R-module for all i < t, t ∈ {{\mathbb{N}}_0}, if and only if H_{\mathfrak{a}}^i\left( {M,N} \right) is a minimax {R_{\mathfrak{p}}} -module for all i < t. We also show that, under certain conditions, \mathrm{Ho}{{\mathrm{m}}_R}\left( {\frac{R}{\mathfrak{a}},H_{\mathfrak{a}}^t\left( {M,N} \right)} \right) is minimax (t ∈ {{\mathbb{N}}_0}). Finally, we study necessary conditions for H_{\mathfrak{a}}^i\left( {M,N} \right) to be \mathfrak{a}-minimax.

Published

25.06.2013

Issue

Section

Research articles

How to Cite

Kianezhad, A., and A. J. Taherizadeh. “Finiteness Properties of Minimax and \mathfrak{a}-Minimax Generalized Local Cohomology Modules”. Ukrains’kyi Matematychnyi Zhurnal, vol. 65, no. 6, June 2013, pp. 796–801, https://umj.imath.kiev.ua/index.php/umj/article/view/2464.