Найкращі наближення класів періодичних функцій багатьох змінних з обмеженою домінуючою мішаною похідною

Автор(и)

DOI:

https://doi.org/10.3842/umzh.v76i7.8307

Ключові слова:

класи Соболєва, найкраще наближення, домінуюча мiшана похiдна, схiдчастий гiперболiчний хрест, суми Фур’є

Анотація

УДК 517.51

Встановлено точні за порядком оцінки наближення класів Соболєва Wrp,α(Td) періодичних функцій багатьох  змінних з обмеженою домінуючою мішаною похідною. Наближення  здійснюється за допомогою  тригонометричних поліномів  зі спектром у східчастих гіперболічних хрестах, а похибка оцінюється в метриці простору Bq,1(Td), 1p,q<.

Посилання

V. N. Temlyakov, Estimates of the asymptotic characteristics of classes of functions with bounded mixed derivative or difference, Proc. Steklov Inst. Math., 189, 161–197 (1990).

B. S. Kashin, V. N. Temlyakov, On best m-term approximations and the entropy of sets in the space L1, Math. Notes, 56, № 5, 1137–1157 (1994); https://doi.org/10.1007/BF02274662. DOI: https://doi.org/10.1007/BF02274662

E. S. Belinsky, Estimates of entropy numbers and Gaussian measures for classes of functions with bounded mixed derivative, J. Approx. Theory, 93, № 1, 114–127 (1998); https://doi.org/10.1006/jath.1997.3157. DOI: https://doi.org/10.1006/jath.1997.3157

A. S. Romanyuk, V. S. Romanyuk, Approximating characteristics of the classes of periodic multivariate functions in the space Binfty,1, Ukr. Math. J., 71, № 2, 308–321 (2019); https://doi.org/10.1007/s11253-019-01646-3. DOI: https://doi.org/10.1007/s11253-019-01646-3

A. S. Romanyuk, V. S. Romanyuk, Estimation of some approximating characteristics of the classes of periodic functions of one and many variables, Ukr. Math. J., 71, № 8, 1257–1272 (2020); https://doi.org/10.1007/s11253-019-01711-x. DOI: https://doi.org/10.1007/s11253-019-01711-x

A. S. Romanyuk, V. S. Romanyuk, Approximative characteristics and properties of operators of the best approximation of classes of functions from the Sobolev and Nikol’skii–Besov spaces, J. Math. Sci., 252, № 4, 508–525 (2021); https://doi.org/10.1007/s10958-020-05177-2. DOI: https://doi.org/10.1007/s10958-020-05177-2

S. B. Hembars’ka, P. V. Zaderei, Best orthogonal trigonometric approximations of the Nikol’skii–Besov type classes of periodic functions in the fpace Binfty,1, Ukr. Math. J., 74, № 6, 883–895 (2022); https://doi.org/10.1007/s11253-022-02115-0. DOI: https://doi.org/10.1007/s11253-022-02115-0

A. S. Romanyuk, S. Ya. Yanchenko, Estimates of approximating characteristics and the properties of the operators of best approximation for the classes of periodic functions in the space B1,1, Ukr. Math. J., 73, № 8, 1278–1298 (2022); https://doi.org/10.1007/s11253-022-01990-x. DOI: https://doi.org/10.1007/s11253-022-01990-x

A. S. Romanyuk, S. Ya. Yanchenko, Approximation of the classes of periodic functions of one and many variables from the Nikol’skii–Besov and Sobolev spaces, Ukr. Math. J., 74, № 6, 967–980 (2022); https://doi.org/10.1007/s11253-022-02110-5. DOI: https://doi.org/10.1007/s11253-022-02110-5

P. I. Lizorkin, S. M. Nikol’skii, Function spaces of mixed smoothness from the decomposition point of view, Proc. Steklov Inst. Math., 187, 163–184 (1990).

V. N. Temlyakov, Approximation of functions with bounded mixed derivative, Proc. Steklov Inst. Math., 178, 1–121 (1989).

V. N. Temlyakov, Approximation of periodic functions, Nova Sci. Publ. Inc., New York (1993).

R. M. Trigub, E. S. Belinsky, Fourier аnalysis and аpproximation of фunctions, Kluwer Acad. Publ., Dordrecht (2004); https://doi.org/10.1007/978-1-4020-2876-2. DOI: https://doi.org/10.1007/978-1-4020-2876-2

A. S. Romanyuk, Approximating characteristics of the classes of periodic functions of many variables, Proc. Inst. Math. Nat. Acad. Sci. Ukraine, Kyiv (2012).

V. N. Temlyakov, Multivariate approximation, Cambridge University Press, Cambridge (2018); https://doi.org/10.1017/9781108689687. DOI: https://doi.org/10.1017/9781108689687

D. Dũng, V. Temlyakov, T. Ullrich, Hyperbolic cross approximation, Adv. Courses Math., CRM Barselona, Birkhäuser/Springer, Cham (2018); https://doi.org/10.1007/978-3-319-92240-9. DOI: https://doi.org/10.1007/978-3-319-92240-9

O. V. Fedunyk-Yaremchuk, M. V. Hembars’kyi, S. B. Hembars’ka, Approximative characteristics of the Nikol’skii--Besov-type classes of periodic functions in the space Binfty,1, Carpathian Math. Publ., 12, № 2, 376–391 (2020); https://doi.org/10.15330/cmp.12.2.376-391. DOI: https://doi.org/10.15330/cmp.12.2.376-391

A. S. Romanyuk, V. S. Romanyuk, K. V. Pozharska, S. B. Hembars'ka, Characteristics of linear and nonlinear approximation of isotropic classes of periodic multivariate functions, Carpathian Math. Publ., 15, № 1, 78–94 (2023); https://doi.org/10.15330/cmp.15.1.78-94. DOI: https://doi.org/10.15330/cmp.15.1.78-94

S. B. Hembars’ka, I. A. Romanyuk, O. V. Fedunyk-Yaremchuk, Characteristics of the linear and nonlinear approximations of the Nikol’skii–Besov-type classes of periodic functions of several variables, J. Math. Sci., 274, № 3, 307–326 (2023); https://doi.org/10.1007/s10958-023-06602-y. DOI: https://doi.org/10.1007/s10958-023-06602-y

A. Kolmogoroff, Über die beste Annäherung von Funktionen einer gegeben Funktionenklasse, Ann. Math., 37, № 1, 107–110 (1936); https://doi.org/10.2307/1968691. DOI: https://doi.org/10.2307/1968691

A. S. Romanyuk, Entropy numbers and widths for the classes Brp,theta of periodic functions of many variables, Ukr. Math. J., 68, № 10, 1620–1636 (2017); https://doi.org/10.1007/s11253-017-1315-9. DOI: https://doi.org/10.1007/s11253-017-1315-9

S. M. Nikol'skii, Inequalities for entire functions of finite power and their application to the theory of differentiable functions of many variables, Tr. Mat. Inst. Steklova, 38, 244–278 (1951).

B. S. Mityagin, The approximation of functions in the space Lp and C on the torus, Mat. Sb., 58, № 4, 397–414 (1962).

N. S. Nikol'skaya, The approximation in the Lp metric of differentiable functions of several variables by Fourier sums, Sib. Math. J., 15, № 2, 282–295 (1974); https://doi.org/10.1007/BF00968291. DOI: https://doi.org/10.1007/BF00968291

E. M. Galeev, Approximation by Fourier sums of classes of functions with several bounded derivatives, Math. Notes, 23, № 2, 109–117 (1978); https://doi.org/10.1007/BF01153149. DOI: https://doi.org/10.1007/BF01153149

Опубліковано

04.08.2024

Номер

Розділ

Статті

Як цитувати

Пожарська, Катерина, et al. “Найкращі наближення класів періодичних функцій багатьох змінних з обмеженою домінуючою мішаною похідною”. Український математичний журнал, vol. 76, no. 7, Aug. 2024, pp. 1007-23, https://doi.org/10.3842/umzh.v76i7.8307.