Improved Young and Heinz operator inequalities with Kantorovich constant

Автор(и)

  • A. Beiranvand Lorestan Univ., Khoramabad, Iran
  • A. G. Ghazanfari Lorestan Univ., Khoramabad, Iran

DOI:

https://doi.org/10.37863/umzh.v73i1.901

Ключові слова:

Operator inequalities, Young inequality, Heinz mean, Kantorovich constant

Анотація

УДК 517.9

Вдосконаленi операторнi нерiвностi Янга та Хайнца з константою Канторовича

Отримано ряд покращень нерівності Янга за допомогою константи Канторовича.
Ці покращені нерівності використовуються для встановлення відповідних операторних нерівностей у просторі Гільберта та деяких нових нерівностей,
що включають норми Гільберта  –  Шмідта для матриць.

Посилання

M. Bakherad, M. Krnic, M. S. Moslehian, ´ Reverse Young-type inequalities for matrices and operators, Rocky Mountain J. Math., 46, № 4, 1089 – 1105 (2016), https://doi.org/10.1216/RMJ-2016-46-4-1089 DOI: https://doi.org/10.1216/RMJ-2016-46-4-1089

C. Conde, Young type inequalities for positive operators, Ann. Funct. Anal., 4, № 2, 144 – 152 (2013), https://doi.org/10.15352/afa/1399899532 DOI: https://doi.org/10.15352/afa/1399899532

J. I. Fujii, M. Fujii, Y. Seo, Z. Hongliang, Recent developments of matrix versions of the arithmetic-geometric meaninequality, Ann. Funct. Anal., 7, № 1, 102 – 117 (2016), https://doi.org/10.1215/20088752-3429400 DOI: https://doi.org/10.1215/20088752-3429400

M. Fujii, R. Nakamoto, Refinements of Hölder – McCarthy inequality and Young inequality, Adv. Oper. Theory, 1, № 2, 184 – 188 (2016), https://doi.org/10.22034/aot.1610.1037

T. Furuta, Invitation to linear operators. From matrices to bounded linear operators on a Hilbert space, Taylor & Francis, Ltd., London (2001), https://doi.org/10.1201/b16820 DOI: https://doi.org/10.1201/b16820

O. Hirzallah, F. Kittaneh, Matrix Young inequalities for the Hilbert – Schmidt norm, Linear Algebra and Appl., 308, 77 – 84 (2000), https://doi.org/10.1016/S0024-3795(99)00270-0 DOI: https://doi.org/10.1016/S0024-3795(99)00270-0

F. Kittaneh, On the convexity of the Heinz means, Integral. Equat. and Oper. Theory, 68, 519 – 527 (2010), https://doi.org/10.1007/s00020-010-1807-6 DOI: https://doi.org/10.1007/s00020-010-1807-6

M. Krnić, More accurate Young, Heinz, and Holder inequalities for matrices, Period Math. Hungar., 71, № 1, 78 – 91 (2015), https://doi.org/10.1007/s10998-015-0086-z DOI: https://doi.org/10.1007/s10998-015-0086-z

W. Liao, J. Wu, Improved Young and Heinz inequalities with the Kantorovich constant, J. Math. Inequal., 10, № 2, 559 – 570 (2016), https://doi.org/10.7153/jmi-10-44 DOI: https://doi.org/10.7153/jmi-10-44

D.S. Mitrinovic, J. Pečarić, A.M. Fink, Classical and new inequalities in analysis, Kluwer Acad. Publ., Dordrecht etc. (1993). DOI: https://doi.org/10.1007/978-94-017-1043-5

J. E. Pečarić, T. Furuta, J. Mićić Hot, Y. Seo, Mond – Pečarić method in operator inequalities, Element, Zagreb (2005).

M. Sababheh, D. Choi, A complete refinement of Young’s inequality, J. Math. Anal. and Appl., 440, № 1, 379 – 393 (2016), https://doi.org/10.1016/j.jmaa.2016.03.049 DOI: https://doi.org/10.1016/j.jmaa.2016.03.049

M. Sababheh, M. S. Moslehian, Advanced refinements of Young and Heinz inequalities, J. Number Theory, 172, 178 – 199 (2017), https://doi.org/10.1016/j.jnt.2016.08.009 DOI: https://doi.org/10.1016/j.jnt.2016.08.009

M. Shafiei, A. G. Ghazanfari, Numerous refinements of Polya and Heinz operator inequalities, Linear and Multilinear Algebra, 66, № 4, 852 – 860 (2018), https://doi.org/10.1080/03081087.2017.1329815 DOI: https://doi.org/10.1080/03081087.2017.1329815

J. G. Zhao, J. L. Wu, Operator inequalities involving improved Young and its reverse inequalities, J. Math. Anal. and Appl., 421, № 2, 1779 – 1789 (2015), https://doi.org/10.1016/j.jmaa.2014.08.032 DOI: https://doi.org/10.1016/j.jmaa.2014.08.032

L. Zou, Y. Jiang, Improved Heinz inequality and its application, J. Inequal. and Appl., 113 (2012); https://doi.org/10.1186/1029-242X-2012-113. DOI: https://doi.org/10.1186/1029-242X-2012-113

H. Zuo, G. Shi, M. Fujii, Refined Young inequality with Kantorovich constant, J. Math. Inequal., 5, № 4, 551 – 556 (2011), https://doi.org/10.7153/jmi-05-47 DOI: https://doi.org/10.7153/jmi-05-47

Завантаження

Опубліковано

22.01.2021

Номер

Розділ

Статті

Як цитувати

Beiranvand, A., and A. G. Ghazanfari. “Improved Young and Heinz Operator Inequalities With Kantorovich Constant”. Український математичний журнал, vol. 73, no. 1, Jan. 2021, pp. 23-32, https://doi.org/10.37863/umzh.v73i1.901.