Solutions of Sylvester equation in $C^*$-modular operators
Анотація
УДК 517.9
Розв’язки рiвняння Сiльвестра для $C^*$-модульних операторiв
Розглянуто розв’язнiсть рiвняння Сiльвестра $AX + Y B = C$ та операторного рiвняння $AXD + FY B = C$ при загальних умовах сумiжностi операторiв мiж гiльбертовими $C^*$- модулями. На основi обернених Мура – Пенроуза для зв’язаних операторiв отримано необхiднi та достатнi умови iснування розв’язкiв цих рiвнянь, а також загальнi вирази для розв’язкiв у випадку, коли вони iснують. Крiм того, запропоновано пiдхiд до вивчення додатних розв’язкiв у спецiальному випадку рiвняння Ляпунова.
Посилання
A. A. Boichuk, A. A. Pokutnyi, Perturbation theory of operator equations in the Fr´echet and Hilbert spaces, Ukr. Math. J., 67, № 9, 1327 – 1335 (2016), https://doi.org/10.1007/s11253-016-1156-y DOI: https://doi.org/10.1007/s11253-016-1156-y
A. A. Boichuk, A. M. Samoilenko, Generalized inverse operators and Fredholm boundary-value problems, 2nd Ed., De Gruyter, Berlin (2016), https://doi.org/10.1515/9783110378443 DOI: https://doi.org/10.1515/9783110378443
H. Braden, The equations $A^TX ± X^TA = B$, SIAM J. Matrix Anal. and Appl., 20, 295 – 302 (1998), https://doi.org/10.1137/S0895479897323270 DOI: https://doi.org/10.1137/S0895479897323270
D. S. Cvetković-Ilić, J. J. Kohila, Positive and real-positive solutions to the equation $axa^*=c$ in $C^*$ -algebras, Linear and Multilinear Algebra, 55, 535 – 543 (2007), https://doi.org/10.1080/03081080701248112 DOI: https://doi.org/10.1080/03081080701248112
A. Dajic, J. J. Koliha, Positive solutions equations $AX = C$ and $XB = D$ for Hilbert space operators, J. Math. Anal. and Appl., 333, 567 – 576 (2007), https://doi.org/10.1016/j.jmaa.2006.11.016 DOI: https://doi.org/10.1016/j.jmaa.2006.11.016
D. S. Djordjevic, Explicit solution of the operator equation $A^{*} X+X^{*} A=B$, J. Comput. and Appl. Math., 200, 701 – 704 (2007), https://doi.org/10.1016/j.cam.2006.01.023 DOI: https://doi.org/10.1016/j.cam.2006.01.023
G. R. Duan, The solution to the matrix equation $AV + BW = EV J + R$, Appl. Math. Lett., 17, no. 10, 1197 – 1202 (2004), https://doi.org/10.1016/j.aml.2003.05.012 DOI: https://doi.org/10.1016/j.aml.2003.05.012
G. R. Duan, R. J. Patton, Robust fault detection in linear systems using Luenberger-type unknown input observers–a parametric approach, Int. G. Syst. Sci., 32, № 4, 533 – 540 (2001), https://doi.org/10.1080/002077201300080992 DOI: https://doi.org/10.1080/002077201300080992
X. Fang, J. Yu., Solutions to operator equations on Hilbert $C^*$ -modules, II, Integral Equat. and Oper. Theory 68, 23 – 60 (2010), https://doi.org/10.1007/s00020-010-1783-x DOI: https://doi.org/10.1007/s00020-010-1783-x
R. E. Harte, M. Mbekhta, On generalized inverses in $C^*$ -algebras, Stud. Math., 103, 71 – 77 (1992), https://doi.org/10.4064/sm-103-1-71-77 DOI: https://doi.org/10.4064/sm-103-1-71-77
C. G. Khatri, S. K. Mitra, Hermitian and nonnegative definite solutions of linear matrix equations, SIAM J. Appl. Math., 31, no. 4, 579 – 585 (1976), https://doi.org/10.1137/0131050 DOI: https://doi.org/10.1137/0131050
P. Kirrinnis, Fast algorithms for the Sylvester equation $AX XB^T = C$, Theor. Comput. Sci., 259, 623 – 638 (2001), https://doi.org/10.1016/S0304-3975(00)00322-4 DOI: https://doi.org/10.1016/S0304-3975(00)00322-4
E. C. Lance, Hilbert $C^*$ -modules, LMS Lect. Note Ser. 210, Cambridge Univ. Press (1995), https://doi.org/10.1017/CBO9780511526206 DOI: https://doi.org/10.1017/CBO9780511526206
M. Mohammadzadeh Karizaki, M. Hassani, M. Amyari, M. Khosravi, Operator matrix of Moore – Penrose inverse operators on Hilbert $C^*$ -modules, Colloq. Math., 140, no. 2, 171 – 182 (2015), https://doi.org/10.4064/cm140-2-2 DOI: https://doi.org/10.4064/cm140-2-2
M. Mohammadzadeh Karizaki, M. Hassani, S. S. Dragomir, Explicit solution to modular operator equation $TXS^*-SX^*T^*=A$, Kragujevac J. Math., 40, № 2, 280 – 289 (2016), https://doi.org/10.5937/kgjmath1602280k DOI: https://doi.org/10.5937/KgJMath1602280K
T. Mor, N. Fukuma, M. Kuwahara, Explicit solution and eigenvalue bounds in the Lyapunov matrix equation, IEEE Trans. Automat. Control, 31, no. 7, 656 – 658 (1986), https://doi.org/10.1109/TAC.1986.1104369 DOI: https://doi.org/10.1109/TAC.1986.1104369
Z. Mousavi, R. Eskandari, M. S. Moslehian, F. Mirzapour, Operator equations $AX + Y B = C$ and $AX+YB=C$ and $AXA^*+BYB^*=C$ in Hilbert $C^*$-modules, Linear Algebra and Appl., 517, 85 – 98 (2017), https://doi.org/10.1016/j.laa.2016.12.001 DOI: https://doi.org/10.1016/j.laa.2016.12.001
F. Piao, Q. Zhanga, Z. Wang, The solution to matrix equation $AX+X^{T}C=B$, J. Franklin Inst., 344, no. 8, 1056 – 1062 (2007), https://doi.org/10.1016/j.jfranklin.2007.05.002 DOI: https://doi.org/10.1016/j.jfranklin.2007.05.002
M. Wang, X. Cheng, M. Wei, Iterative algorithms for solving the matrix equation $AXB + CXTD = E$, Appl. Math. and Comput., 187, № 2, 622 – 629 (2007), https://doi.org/10.1016/j.amc.2006.08.169 DOI: https://doi.org/10.1016/j.amc.2006.08.169
Q. Xu, Common Hermitian and Positive solutions to the adjointable operator equations $AX = C, XB = D$, Linear Algebra and Appl., 429, no. 1, 1 – 11 (2008), https://doi.org/10.1016/j.laa.2008.01.030 DOI: https://doi.org/10.1016/j.laa.2008.01.030
Q. Xu, L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert $C^*$ -modules, Linear Algebra and Appl., 428, 992 – 1000 (2008), https://doi.org/10.1016/j.laa.2007.08.035 DOI: https://doi.org/10.1016/j.laa.2007.08.035
Q. Xu, L. Sheng, Y. Gu, The solutions to some operator equations, Linear Algebra and Appl., 429, no. 8 - 9, 1997 – 2024 (2008), https://doi.org/10.1016/j.laa.2008.05.034 DOI: https://doi.org/10.1016/j.laa.2008.05.034
X. Zhang, Hermitian nonnegative-definite and positive-definite solutions of the matrix equation $AXB = C$, Appl. Math. E-Notes 4, 40 – 47 (2004).
B. Zhou, G. R. Duan, An explicit solution to the matrix equation $AX - XF = BY$, Linear Algebra and Appl., 402, 345 – 366 (2005), https://doi.org/10.1016/j.laa.2005.01.018 DOI: https://doi.org/10.1016/j.laa.2005.01.018
Авторські права (c) 2021 Mahnaz Khanehgir
Для цієї роботи діють умови ліцензії Creative Commons Attribution 4.0 International License.