Almost everywhere convergence of Cesàro means of two variable Walsh – Fourier series with varying parameteres

  • A. A. Abu Joudeh Inst. Math., Univ. Debrecen, Hungary
  • G. Gát Inst. Math., Univ. Debrecen, Hungary
Ключові слова: Cesàro means with varying parameters, two-dimensional Walsh-Fourier series, Marcinkiewicz means

Анотація

УДК 517.5

Збiжнiсть майже скрізь середнiх Чезаро для рядiв Уолша–Фур’є вiд двох змiнних зi змiнними параметрами

Доведено, що максимальний оператор вiд деяких середнiх $(C, \beta n)$ кубiчних часткових сум рядiв Уолша – Фур’є двох змiнних для iнтегровних функцiй має слабкий тип $(L_1,L_1)$. Бiльш того, $ (C , \beta_{n})$-середнi $\sigma_{2^n}^{\beta_{n}} f$ для функцiї $ f \in L_{1} $ збiгаються мaйже скрiзь до $f$ для $ f \in L_{1}(I^2) $, де $I$ — група Уолша для деяких послiдовностей $1> \beta_n \searrow 0$.

Посилання

T. Akhobadze, On the convergence of generalized Ces`aro means of trigonometric Fourier series. I, Acta Math. Hungar. 115, № 1-2, 59 – 78 (2007), https://doi.org/10.1007/s10474-007-5214-7 DOI: https://doi.org/10.1007/s10474-007-5214-7

T. Akhobadze, On the generalized Ces`aro means of trigonometric Fourier series, Bull. TICMI, 18, № 1, 75 – 84 (2014).

A. Abu Joudeh, G. G´at, Almost everywhere convergence of Ces`aro means with varying parameters of Walsh – Fourier series, Miskolc Math. Notes, 19, № 1, 303 – 317 (2018).

M. I. D’yachenko, On $(C,alpha)$-summability of multiple trigonometric Fourier series, (Russian) Soobshch. Akad. Nauk Gruzin. SSR 131, № 2, 261 – 263 (1988).

G. G´at, Convergence of Marcinkiewicz means of integrable functions with respect to two-dimensional Vilenkin systems, Georgian Mathematical Journal. 11, № 3, 467 – 478 (2004).

G. G´at, On $(C,1)$ summability for Vilenkin-like systems, Stud. Math. 144, № 2, 101 – 120 (2001),https://doi.org/10.4064/sm144-2-1 DOI: https://doi.org/10.4064/sm144-2-1

U. Goginava, Marcinkiewicz-Fejer means of $d$-dimensional Walsh – Fourier series, Journal of Mathematical Analysis and Applications. 307, № 1, 206 – 218 (2005), https://doi.org/10.1016/j.jmaa.2004.11.001 DOI: https://doi.org/10.1016/j.jmaa.2004.11.001

U. Goginava, Almost everywhere convergence of $(C,alpha)$-means of cubical partial sums of $d$-dimensional Walsh – Fourier series, Journal of Approximation Theory. 141, № 1, 8 – 28 (2006), https://doi.org/10.1016/j.jat.2006.01.001 DOI: https://doi.org/10.1016/j.jat.2006.01.001

J. Marcinkiewicz, Sur une nouvelle condition pour la convergence presque partout des s´eries de Fourier (French), Annali della Scuola Normale Superiore di Pisa-Classe di Scienze. 8, № 3-4, 239 – 240 (1939), https://doi.org/10.4064/sm-8-1-78-91 DOI: https://doi.org/10.4064/sm-8-1-78-91

F. Schipp, W.R. Wade, P. Simon, J. P´al, Walsh series: an introduction to dyadic harmonic analysis, Adam Hilger, Bristol, New York (1990).

F. Weisz, Convergence of double Walsh – Fourier series and Hardy spaces., Approxim. Theory and Appl., 17, № 2, 32 – 44 (2001), https://doi.org/10.1023/A:1015553812707 DOI: https://doi.org/10.1023/A:1015553812707

L. V. Žižiašvili, A generalization of a theorem of Marcinkiewicz., Izv. Ross. Akad. Nauk. Ser. Mat., 32, № 5, 1112 – 1122 (1968).

A. Zygmund, Trigonometric series, Univ. Press, Cambridge (1959).

Опубліковано
11.03.2021
Як цитувати
Abu JoudehA. A., і GátG. «Almost Everywhere Convergence of Cesàro Means of Two Variable Walsh – Fourier Series With Varying Parameteres». Український математичний журнал, вип. 73, вип. 3, Березень 2021, с. 291 -07, doi:10.37863/umzh.v73i3.196.
Розділ
Статті