Спеціальні просторові кривi, що характеризуються умовою $\det(α^{(3)}, α^{(4)}, α^{(5)}) = 0$
Анотація
За допомогою тих фактів, що умова $\det(α^{(1)}, α^{(2)}, α^{(3)}) = 0$ характеризує плоску криву, а умова $\det(α^{(2)}, α^{(3)}, α^{(4)}) = 0$ — криву зі сталим нахилом, наведено спеціальні просторові криві, що характеризуються умовами $\det(α^{(3)}, α^{(4)}, α^{(5)}) = 0$, в різних підходах. Показано, що просторова крива є кривою Салковського тоді i тільки тоді, коли $\det(α^{(3)}, α^{(4)}, α^{(5)}) = 0$. Підхід, що використовується в роботі, є корисним для розуміння ролі кривих, що характеризуються умовою $\det(α^{(3)}, α^{(4)}, α^{(5)}) = 0$ в диференціальній геометрії.
Опубліковано
25.04.2014
Як цитувати
СарацоґлуС., і ЯйліІ. «Спеціальні просторові кривi, що характеризуються умовою $\det(α^{(3)}, α^{(4)}, α^{(5)}) = 0$». Український математичний журнал, вип. 66, вип. 4, Квітень 2014, с. 571-6, https://umj.imath.kiev.ua/index.php/umj/article/view/2160.
Номер
Розділ
Короткі повідомлення