Про комбiнаторнi продовження деяких фiктивних тета-функцiй Рамануджана
Анотація
Наведено комбінаторну інтерпретацію п'яти фіктивних тета-функцій С. Рамануджана за допомогою деяких асоційованих ратчастих функцій шляху та антигачкових різниць.
Отримані результати дають нову комбінаторну інтерпретацію п'яти фіктивних тета-функцій Рамануджана. За допомогою взаємно однозначної відповідності між асоційованими ратчастими функціями шляху та $(n+t)$-кольоровими розбиттями, а також між асоційованими ратчастими функціями шляху та зваженими ратчастими функціями шляху узагальнено роботи Агарвала та Агарвала і Рана на випадок п'яти нових 3-шляхових комбінаторних тотожностей. Ці результати потім розширено на випадок 4-шляхових комбінаторних тотожностей за допомогою взаємно однозначної відповідності між $(n+t)$-кольоровими розбиттями та розбиттями з певними антигачковими різницями. Ці цікаві результати встановлюють елегантні комбінаторні зв'язки між фіктивними тета-функціями Рамануджана, $(n+t)$-кольоровими розбиттями, зваженими ратчастими шляхами, асоційованими ратчастими шляхами та антигачковими різницями.
Посилання
Agarwal, A. K. Rogers-Ramanujan identities for $n$-color partitions. J. Number Theory 28 (1988), no. 3, 299--305. doi: 10.1016/0022-314X(88)90045-5
Agarwal, A. K. Antihook differences and some partition identities. Proc. Amer. Math. Soc. 110 (1990), no. 4, 1137--1142. doi: 10.2307/2047768
A. K. Agarwal, Lattice paths and Rogers – Ramanujan type identities, Proc. 14th annual Conf. of the Ramanujan Math. Soc., Banagalore, 31 – 39 (1999).
Agarwal, A. K. $n$-color partition theoretic interpretations of some mock theta functions. Electron. J. Combin. 11 (2004), no. 1, Note 14, 6 pp. doi: 10.37236/1855
A. K. Agarwal, Lattice paths and mock theta functions, Proc. 6th Int. Conf. SSFA, Jaunpur, India, 95 – 102 (2005).
Agarwal, A. K.; Andrews, G. E. Hook differences and lattice paths. J. Statist. Plann. Inference 14 (1986), no. 1, 5--14. doi: 10.1016/0378-3758(86)90004-2
Agarwal, A. K.; Andrews, George E. Rogers-Ramanujan identities for partitions with "$n$ copies of $n$''. J. Combin. Theory Ser. A 45 (1987), no. 1, 40--49. doi: 10.1016/0097-3165(87)90045-8
Agarwal, A. K.; Bressoud, David M. Lattice paths and multiple basic hypergeometric series. Pacific J. Math. 136 (1989), no. 2, 209--228. MR0978611
Agarwal, Ashok Kumar; Goyal, Megha. Lattice paths and Rogers identities. Open J. Discrete Math. 1 (2011), no. 2, 89--95. doi: 10.4236/ojdm.2011.12011
Agarwal, A. K.; Goyal, M. New partition theoretic interpretations of Rogers-Ramanujan identities. Int. J. Comb. 2012, Art. ID 409505, 6 pp. doi: 10.1155/2012/409505
Agarwal, A. K.; Goyal, Megha. On 3-way combinatorial identities. Proc. Indian Acad. Sci. Math. Sci. 128 (2018), no. 1, Art. 2, 21 pp. doi: 10.1007/s12044-018-0378-3
Agarwal, A. K.; Rana, M. Two new combinatorial interpretations of a fifth order mock theta function. J. Indian Math. Soc. (N.S.) 2007, Special volume on the occasion of the centenary year of IMS (1907-2007), 11--24 (2008). MR2518230
Weisner, Louis. Recent Publications: Reviews: Collected Papers of Srinivasa Ramanujan. Amer. Math. Monthly 35 (1928), no. 6, 320--321. doi: 10.2307/2298686
Anand, S.; Agarwal, A. K. A new class of lattice paths and partitions with $n$ copies of $n$. Proc. Indian Acad. Sci. Math. Sci. 122 (2012), no. 1, 23--39. doi: 10.1007/s12044-012-0057-8
Andrews, George E. Generalized Frobenius partitions. Mem. Amer. Math. Soc. 49 (1984), no. 301, {rm iv}+44 pp. doi: 10.1090/memo/0301
Andrews, George E.; Hickerson, Dean. Ramanujan's "lost'' notebook. VII. The sixth order mock theta functions. Adv. Math. 89 (1991), no. 1, 60--105. doi: 10.1016/0001-8708(91)90083-J
S. Bhargava, S.; Vasuki, K. R.; Rajanna, K. R. On some Ramanujan identities for the ratios of eta-functions. Reprint of Ukraïn. Mat. Zh. 66 (2014), no. 8, 1011–1028. Ukrainian Math. J. 66 (2015), no. 8, 1131--1151. doi: 10.1007/s11253-015-0999-y
Choi, Youn-Seo. Tenth order mock theta functions in Ramanujan's lost notebook. Invent. Math. 136 (1999), no. 3, 497--569. doi: 10.1007/s002220050318
Chu, W.; Wang, C. Iteration process for multiple Rogers-Ramanujan identities. Ukrainian Math. J. 64 (2012), no. 1, 110--139. doi: 10.1007/s11253-012-0633-1
Gordon, Basil; McIntosh, Richard J. Some eighth order mock theta functions. J. London Math. Soc. (2) 62 (2000), no. 2, 321--335. doi: 10.1112/S0024610700008735
Gordon, Basil; McIntosh, Richard J. Modular transformations of Ramanujan's fifth and seventh order mock theta functions. Rankin memorial issues. Ramanujan J. 7 (2003), no. 1-3, 193--222. doi: 10.1023/A:1026299229509
Goyal, M.; Agarwal, A. K. Further Rogers-Ramanujan identities for $n$-color partitions. Util. Math. 95 (2014), 141--148. MR3243926
Goyal, M.; Agarwal, A. K. On a new class of combinatorial identities. Ars Combin. 127 (2016), 65--77. doi: 10.4236/ojdm.2014.44012
Goyal, Megha. New combinatorial interpretations of some Rogers-Ramanujan type identities. Contrib. Discrete Math. 11 (2017), no. 2, 43--57. doi: 10.11575/cdm.v11i2.62576
Goyal, Megha. On combinatorial extensions of Rogers-Ramanujan type identities. Contrib. Discrete Math. 12 (2017), no. 2, 33--51. doi: 10.11575/cdm.v12i2.62496
McIntosh, Richard J. Second order mock theta functions. Canad. Math. Bull. 50 (2007), no. 2, 284--290. doi: 10.4153/CMB-2007-028-9
McIntosh, Richard J. The $H$ and $K$ family of mock theta functions. Canad. J. Math. 64 (2012), no. 4, 935--960. doi: 10.4153/CJM-2011-066-0
Авторські права (c) 2020 M. Goyal
Для цієї роботи діють умови ліцензії Creative Commons Attribution 4.0 International License.