Про один клас сильних граничних теорем для неоднорiдних марковських ланцюжкiв, що проiндексованi узагальненим деревом бете на узагальненiй системi випадкового вибору
Анотація
Вивчаються сильнi граничнi теореми для послiдовностi функцiй двох змiнних неоднорiдного марковського ланцюжка, що проiндексований узагальненим деревом Бете на узагальненiй системi випадкового вибору, шляхом побудови невiд’ємного мартингала. Як наслiдок, узагальнено результати Янга та Є i отримано деякi граничнi теореми для частот станiв, упорядкованих пар та умовного сподiвання функцiї двох змiнних на деревi Келi.
Опубліковано
25.10.2011
Як цитувати
КанґкангВ. «Про один клас сильних граничних теорем для неоднорiдних марковських ланцюжкiв, що проiндексованi узагальненим деревом бете на узагальненiй системi випадкового вибору». Український математичний журнал, вип. 63, вип. 10, Жовтень 2011, с. 1336-51, https://umj.imath.kiev.ua/index.php/umj/article/view/2810.
Номер
Розділ
Статті