Эллиптическое уравнение с сингулярным потенциалом

  • Б. А. Худашулыев Туркмен, ун-т, Ашгабат

Анотація

Розглядається задача знаходження невід'ємної функції $u(x)$ у кулі $B = B(O, R) ⊂ R^n,\; n ≥ 3:$ $$−Δu=V(x)u,u|∂B=ϕ(x),$$ де $Δ$ — оператор Лапласа, $x = (x 1, x 2,…, x n )$, $∂B$ —межа кулі $B$, у припущенні, що $0 ≤ V(x) ∈ L 1(B), 0 ≤ φ(x) ∈ L 1(∂B)$ і $φ(x)$ неперервна на ЭВ. Вивчається поведінка невід'ємних розв'язків цієї задачі і доведено, що існує стала $C_{*} (n) = (n − 2)^2/4$ така, що якщо $V_0 (x) = \frac{c}{|x|^2}, то ця задача при $0 ≤ c ≤ $C_{*} (n)$ і $V(x) ≤ V_0(x)$ кулі $В$ має невід'ємний розв'язок при будь-якій невід'ємній неперервній граничній функції $φ(x) ∈ L_1(∂B)$, а при $0 ≤ c ≤ C_{*} (n)$ і $V(x) ≥ V_0(x)$ у кулі $В$ не має невід'ємних розв'язків, якщо $φ(x) > 0$.
Опубліковано
25.12.2010
Як цитувати
ХудашулыевБ. А. «Эллиптическое уравнение с сингулярным потенциалом». Український математичний журнал, вип. 62, вип. 12, Грудень 2010, с. 1715 -, https://umj.imath.kiev.ua/index.php/umj/article/view/2994.
Розділ
Короткі повідомлення