Two different sequences of infinitely many homoclinic solutions for a class of fractional Hamiltonian systems

  • A. Benhassine Higher Institute of Science Computer and Mathematics Monastir University, Tunisia
Keywords: DIFFERENT SEQUENCES

Abstract

UDC 517.9

We consider the problem of existence of infinitely many homoclinic solutions for the following fractional Hamiltonian systems:\begin{align}\begin{aligned}& -_{t}D^{\alpha}_{\infty}\left(_{-\infty}D^{\alpha}_{t}x(t)\right)-L(t)x(t)+\nabla W(t,x(t))=0,\\& x\in H^{\alpha}\left(\mathbb{R},\mathbb{R}^{N}\right),\end{aligned}\tag{FHS}\end{align}where $\alpha\in\left(\dfrac{1}{2},1\right],$ $t\in\mathbb{R},$ $x\in\mathbb{R}^N,$ and $_{-\infty}D^{\alpha}_{t}$  and $_{t}D^{\alpha}_{\infty}$ are the left and right Liouville\,--\,Weyl fractional derivatives of order $\alpha$ on the whole axis $\mathbb{R},$ respectively. The novelty of our results is that, under the assumption that  the nonlinearity $W\in C^{1}\big(\mathbb{R}\times\mathbb{R}^{N},\mathbb{R}\big)$ involves a combination of superquadratic and subquadratic terms, for the first time, we show that (FHS) possesses two different sequences of infinitely many homoclinic solutions via the Fountain theorem and the dual Fountain theorem such that the corresponding energy functional of (FHS) goes to infinity and zero, respectively. Some recent results available in the literature are generalized and significantly improved.

References

O. Agrawal, J. Tenreiro Machado, J. Sabatier, Fractional derivatives and their application, Nonlinear Dynam., Springer-Verlag, Berlin (2004).

A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, № 4, 349–381 (1973). DOI: https://doi.org/10.1016/0022-1236(73)90051-7

A. Ambrosetti, V. C. Zelati, Multiple homoclinic orbits for a class of conservative systems, Rend. Semin. Mat. Univ. Padova, 89, 177–194 (1993).

A. Bahri, Critical points at infinity in some variational problems, Pitman Res. Notes in Math. Ser., London (1988). DOI: https://doi.org/10.1007/BFb0100779

Z. Bai, H. Lü, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. and Appl., 311, № 2, 495–505 (2005). DOI: https://doi.org/10.1016/j.jmaa.2005.02.052

A. Benhassine, Multiplicity of solutions for nonperiodic perturbed fractional Hamiltonian equations, Electron. J. Different. Equat., 93, 1–15 (2017).

A. Benhassine, Multiple of homoclinic solutions for a perturbed dynamical systems with combined nonlinearities, Mediterr. J. Math., 14, № 3, 1–20 (2017). DOI: https://doi.org/10.1007/s00009-017-0930-x

A. Benhassine, Existence and multiplicity of periodic solutions for a class of the second order Hamiltonian systems, Nonlinear Dyn. and Syst. Theory, 14, № 3, 257–264 (2014).

A. Benhassine, Existence and infinitely of many solutions for a nonperiodic fractional Hamiltonian systems, Different. and Integral Equat. (to appear).

D. Benson, S. Wheatcraft, M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resour. Res., 36, № 6, 1403–1412 (2000). DOI: https://doi.org/10.1029/2000WR900031

D. Benson, S. Wheatcraft, M. Meerschaert, The fractional-order governing equation of lvy motion, Water Resour. Res., 36, № 6, 1413–1423 (2000). DOI: https://doi.org/10.1029/2000WR900032

P. C. Carriao, O. H. Miyagaki, Existence of homoclinic solutions for a class of time-dependent Hamiltonian systems, J. Math. Anal. and Appl., 230, 157–172 (1999). DOI: https://doi.org/10.1006/jmaa.1998.6184

P. Chen, X. He, X. H. Tang, Infinitely many solutions for a class of fractional Hamiltonian systems via critical point theory, Math. Methods Appl. Sci., 39, № 5, 1005–1019 (2016). DOI: https://doi.org/10.1002/mma.3537

Y. Ding, Existence and multiplicity results for homoclinic solutions to a class of Hamiltonian systems, Nonlinear Anal., 25, № 11, 1095–1113 (1995). DOI: https://doi.org/10.1016/0362-546X(94)00229-B

V. Ervin, J. Roop, Variational formulation for the stationary fractional advection dispersion equation, Numer. Methods Partial Different. Equat., 22, 58–76 (2006). DOI: https://doi.org/10.1002/num.20112

R. Hilfer, Applications of fractional calculus in physics, World Sci., Singapore (2000). DOI: https://doi.org/10.1142/3779

W. Jang, The existence of solutions for boundary-value problems of fractional differential equations at resonance, Nonlinear Anal., 74, № 5, 1987–1994 (2011). DOI: https://doi.org/10.1016/j.na.2010.11.005

F. Jiao, Y. Zhou, Existence results for fractional boundary-value problem via critical point theory, Internat. J. Bifurcation and Chaos, 22, № 4, 1–17 (2012). DOI: https://doi.org/10.1142/S0218127412500861

F. Jiao, Y. Zhou, Existence of solutions for a class of fractional boundary value problem via critical point theory, Comput. Math. Appl., 62, № 3, 1181–1199 (2011). DOI: https://doi.org/10.1016/j.camwa.2011.03.086

A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math. Studies, Singapore (2006).

W. Omana, M. Willem, Homoclinic orbits for a class of Hamiltonian systems, Different. Integral Equat., 5, № 5, 1115–1120 (1992). DOI: https://doi.org/10.57262/die/1370870945

H. Poincaré, Les méthodes nouvelles de la mécanique céleste, Gauthier-Villars, Paris (1897–1899). DOI: https://doi.org/10.1007/BF02742713

P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, Amer. Math. Soc., Providence, RI, 65, 45–60 (1986). DOI: https://doi.org/10.1090/cbms/065

P. H. Rabinowitz, K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206, № 3, 473–499 (1991). DOI: https://doi.org/10.1007/BF02571356

C. Torres, Existence of solution for a class of fractional Hamiltonian systems, Electron. J. Different. Equat., 2013, № 259, 1–12 (2013).

Z. Zhang, R. Yuan, Variational approach to solutions for a class of fractional Hamiltonian systems, Math. Methods Appl. Sci., 37, № 13, 1873–1883 (2014). DOI: https://doi.org/10.1002/mma.2941

Z. Zhang, R. Yuan, Existence of solutions to fractional Hamiltonian systems with combined nonlinearities, Electron. J. Different. Equat., 2016, № 40, 1–13 (2016).

W. Zou, Variant fountain theorems and their applications, Manuscripta Math., 104, 343–358 (2001). DOI: https://doi.org/10.1007/s002290170032

Published
02.03.2023
How to Cite
Benhassine, A. “Two Different Sequences of Infinitely Many Homoclinic Solutions for a Class of Fractional Hamiltonian Systems”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 75, no. 2, Mar. 2023, pp. 155 -67, doi:10.37863/umzh.v75i2.328.
Section
Research articles