On exact Bernstein-type inequalities for splines

Authors

  • V. A. Kofanov

Abstract

We establish new exact Bernstein-type and Kolmogorov-type inequalities. The main result of this work is the following exact inequality for periodic splines s of order r and defect 1 with nodes at the points iπ/n, i ∈ Z, n ∈ N: \left\| {s^{(k)} } \right\|_q \leqslant n^{k + 1/p - 1/q} \frac{{\left\| {\varphi _{r - k} } \right\|_q }}{{\left\| {\varphi _r } \right\|_p }}\left\| s \right\|_p , where k, r ∈ N, k < r, p = 1 or p = 2, q > p, and ϕr is the perfect Euler spline of order r.

Published

25.10.2006

Issue

Section

Research articles

How to Cite

Kofanov, V. A. “On Exact Bernstein-Type Inequalities for Splines”. Ukrains’kyi Matematychnyi Zhurnal, vol. 58, no. 10, Oct. 2006, pp. 1357–1367, https://umj.imath.kiev.ua/index.php/umj/article/view/3538.