Теореми типу Бернштейна та теореми про єдність

  • В. В. Логвиненко
  • Н. Назарова

Анотація

Нехай $f$ — ціла функція скінченного типу відносно порядку $\rho$ у $\mathbb{C}^n$, $\mathbb{E}$ — підмножииа відкритого конуса (чим менше $\rho$ , тим більш розрідженим є $\mathbb{E}$ у деякому $n$-вимірному підпросторі $\mathbb{R}^{2n} {\text{ ( = }}\mathbb{C}^n {\text{)}}$. Припускається, що даний конус містить промінь $\left\{ {z = tz^0 \in \mathbb{C}^n :t > 0} \right\}$. Показано, що радіальний індикатор $h_f (z^0 )$ функції $f$ у будь-якій точці $z^0 \in \mathbb{C}^n \backslash \{ 0\}$ можна оцінити через значення функції $f$ у точках дискретної множини $\mathbb{E}$. Крім того, якщо $f \to 0$ досить швидко при $z \to \infty$ на $\mathbb{E}$, то дана функція дорівнює нулю тотожно. Для доведення цих результатів розроблено спеціальну апроксимаційну техніку. В останній частині роботи доведено, що за деяких близьких до точних умов відносно $\rho$ і $\mathbb{E}$ функція /, обмежена на $\mathbb{E}$, буде обмеженою па всьому промені.
Опубліковано
25.02.2004
Як цитувати
ЛогвиненкоВ. В., і НазароваН. «Теореми типу Бернштейна та теореми про єдність». Український математичний журнал, вип. 56, вип. 2, Лютий 2004, с. 198-13, https://umj.imath.kiev.ua/index.php/umj/article/view/3743.
Розділ
Статті