Сравнение точных констант в неравенствах для производных функций, заданных на вещественной оси и окружности
Анотація
Досліджується взаємозв'язок між константами $K(R)$ і $K(T)$, де $$K\left( G \right) = K_{k,r} \left( {G;q,p,s;\alpha } \right): = \mathop {\mathop {\sup }\limits_{x \in L_{p,s}^r \left( G \right)} }\limits_{x^{(r)} \ne 0} \frac{{\left\| {x^{\left( k \right)} } \right\|_{L_q \left( G \right)} }}{{\left\| x \right\|_{L_q \left( G \right)}^\alpha \left\| {x^{\left( r \right)} } \right\|_{L_s \left( G \right)}^{1 - \alpha } }}$$ —точна константа в нерівності Колмогорова; $R$ — дійсна пряма, $Т$ — одиничне коло; $L_{p,s}^r (G)$ — множина функцій $x ∈ L_p(G)$ таких, що $x(r) ∈ L_s(G),\; q, p, s ∈ [1, ∞],\; k, r ∈ N,\; k < r$, $$\frac{r - k + 1/q - 1/s}{r + 1/q - 1/s} = 1 - k/r$$ якщо $K(R) = K(T)$, $$\frac{r - k + 1/q - 1/s}{r + 1/q - 1/s} < 1 - k/r$$ якщо $K(R) = K(T)$. Остання нерівність може бути як рівністю, так і строгою нерівністю. Як наслідок одержано нові точні нерівності типу Колмогорова на дійсній прямій.
Опубліковано
25.05.2003
Як цитувати
БабенкоВ. Ф., КофановВ. А., і ПичуговС. А. «Сравнение точных констант в неравенствах для производных функций, заданных на вещественной оси и окружности». Український математичний журнал, вип. 55, вип. 5, Травень 2003, с. 579-8, https://umj.imath.kiev.ua/index.php/umj/article/view/3934.
Номер
Розділ
Статті