Качественное исследование сингулярной задачи Коши $\sum\limits_{k = 1}^n {(a_{k1} t + a_{k2} x)(x')^k = b_1 t + b_2 x + f(t,x,x'),x(0) = 0}$

  • А. Е. Зернов

Анотація

Доведено існування неперервно диференційовних розв'язків $x:(0,ρ] → R$ з потрібними асимптотичними властивостями при $t → +0$ та визначено кількість цих розв'язків.
Опубліковано
25.10.2003
Як цитувати
ЗерновА. Е. «Качественное исследование сингулярной задачи Коши $\sum\limits_{k = 1}^n {(a_{k1} T + a_{k2} x)(x’)^k = b_1 T + b_2 X + f(t,x,x’),x(0) = 0}$». Український математичний журнал, вип. 55, вип. 10, Жовтень 2003, с. 1419-24, https://umj.imath.kiev.ua/index.php/umj/article/view/4010.
Розділ
Короткі повідомлення