Неравенства разных метрик для дифференцируемых периодических функций, полиномов и сплайнов
Анотація
Одержано нові нерівності різних метрик для диференційовпих періодичних функцій, зокрема, доведено, що при $p, q ∈ (0, ∞], q > p$ і $s ∈ [p, q]$, для функцій $x \in L_\infty ^{{\text{ }}r}$ справедлива непокращувана нерівність $$|| (x-c_{s+1} (x))_{\pm} ||_q \leqslant \frac{|| (\phi_r)_{\pm} ||_q}{|| \phi_r ||_p^{\frac{r+1/q}{r+1/p}}} || x-c_{s+1}(x) ||_p^{\frac{r+1/q}{r+1/P}} || x^(r) ||_\infty^{\frac{1/p-1/q}{r+1/p}},$$ де $ϕ_r$ — ідеальний сплайн Ейлера порядку $r$, $c_{s + 1}(x)$— константа найкращого наближення функції $x$ у просторі $L_{s + 1}$. За допомогою наведеної нерівності одержано нову нерівність типу Бериштейна для тригонометричних поліномів $τ$ порядку, що не перевищує $n$: $$|| (\tau^(k))_{\pm} ||_q \leqslant n^{k+1/p-1/q} \frac{|| (\cos(\cdot))_{\pm} ||_q}{|| \cos(\cdot) ||_p} || \tau ||_p,$$ де $k ∈ N, p ∈ (0, 1], a q ∈ [1, ∞]$. Розглянуто інші застосування цієї нерівності.
Опубліковано
25.05.2001
Як цитувати
КофановВ. О. «Неравенства разных метрик для дифференцируемых периодических
функций, полиномов и сплайнов». Український математичний журнал, вип. 53, вип. 5, Травень 2001, с. 597-09, https://umj.imath.kiev.ua/index.php/umj/article/view/4283.
Номер
Розділ
Статті