Сукупна неперервність і квазінеперервність горизонтально квазінеперервиих відображень
Анотація
Показано, що якщо $X$— топологічний простір, $Y$ задовольняє другу аксіому злічениості і $Z$ — метризовний простір, то для кожного відображення $f: X \times Y → Z$, яке горизонтально квазінеперервне і неперервне відносно другої змінної, множина таких точок $x ∈ X$, що $f$ неперервне в кожній точці з $\{x\} × Y$, є залишковою в $X$. Крім того, узагальнено один результат Мартіиа про квазіиеперервиість нарізно квазінеперервиих відображень.
Опубліковано
25.12.2000
Як цитувати
МаслюченкоВ. К., і НестеренкоВ. В. «Сукупна неперервність і квазінеперервність горизонтально квазінеперервиих відображень». Український математичний журнал, вип. 52, вип. 12, Грудень 2000, с. 1711-4, https://umj.imath.kiev.ua/index.php/umj/article/view/4575.
Номер
Розділ
Короткі повідомлення