On the existence of solutions of one-dimensional fourth-order equations

  • S. Shokooh Gonbad Kavous Univ., Iran
  • G. A. Afrouzi Univ. Mazandaran, Babolsar, Iran
  • A. Hadjian Univ. Bojnord, Iran
Ключові слова: Non-trivial solution, Variational methods, Dirichlet problem

Анотація

УДК 517.9

Про існування розв'язків одновимірних рівнянь четвертого порядку

За допомогою варіаційних методiв та теореми про критичні точки  доведено існування нетривіальних розв'язків одновимірних рівнянь четвертого порядку. Також наведено відповідні результати щодо кратності.

Посилання

G. A. Afrouzi, S. Heidarkhani, D. O’Regan, Existence of three solutions for a doubly eigenvalue fourth-order Boundary-value problem, Taiwanese J. Math., 15, no. 1, 201 – 210 (2011), https://doi.org/10.11650/twjm/1500406170 DOI: https://doi.org/10.11650/twjm/1500406170

A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349 – 381 (1973), https://doi.org/10.1016/0022-1236(73)90051-7 DOI: https://doi.org/10.1016/0022-1236(73)90051-7

A. Averna, G. Bonanno, Three solutions for a quasilinear two-point boundary-value problem involving the onedimensional p-Laplacian, Proc. Edinburgh Math. Soc., 47, no. 2, 257 – 270 (2004), https://doi.org/10.1017/S0013091502000767 DOI: https://doi.org/10.1017/S0013091502000767

Z. Bai, Positive solutions of some nonlocal fourth-order Boundary-value problem, Appl. Math. and Comput., 215, no. 12, 4191 – 4197 (2010), https://doi.org/10.1016/j.amc.2009.12.040 DOI: https://doi.org/10.1016/j.amc.2009.12.040

G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal., 75, no. 5, 2992 – 3007 (2012), https://doi.org/10.1016/j.na.2011.12.003 DOI: https://doi.org/10.1016/j.na.2011.12.003

G. Bonanno, B. Di Bella, A Boundary-value problem for fourth-order elastic beam equations, J. Math. Anal. and Appl., 343, no. 2, 1166 – 1176 (2008), https://doi.org/10.1016/j.jmaa.2008.01.049 DOI: https://doi.org/10.1016/j.jmaa.2008.01.049

G. Bonanno, B. Di Bella, A fourth-order Boundary-value problem for a Sturm – Liouville type equation, Appl. Math. and Comput., 217, no. 8, 3635 – 3640 (2010), https://doi.org/10.1016/j.amc.2010.10.019 DOI: https://doi.org/10.1016/j.amc.2010.10.019

G. Bonanno, B. Di Bella, D. O’Regan, nontrivial solutions for nonlinear fourth-order elastic beam equations, Comput. Math. Appl., 62, no. 4, 1862 – 1869 (2011), https://doi.org/10.1016/j.camwa.2011.06.029 DOI: https://doi.org/10.1016/j.camwa.2011.06.029

G. Chai, Existence of positive solutions for fourth-order Boundary-value problem with variable parameters, Nonlinear Anal., 66, no. 4, 870 – 880 (2007), https://doi.org/10.1016/j.na.2005.12.028 DOI: https://doi.org/10.1016/j.na.2005.12.028

E. Dulacska, ` Soil settlement effects on buildings, Dev. Geotechn. Eng., Vol. 69, Elsevier, Amsterdam, The Netherlands (1992).

R. Livrea, Existence of three solutions for a quasilinear two point Boundary-value problem, Arch. Math., 79, no. 4, 288 – 298 (2002).

P. K. Palamides, Boundary-value problems for shallow elastic membrane caps, IMA J. Appl. Math., 67, no. 3, 281 – 299 (2002), https://doi.org/10.1093/imamat/67.3.281 DOI: https://doi.org/10.1093/imamat/67.3.281

L. A. Peletier, W. C. Troy, R.C.A.M. Van der Vorst, Stationary solutions of a fourth-order nonlinear diffusion equation, Different. Equat., 31, no. 2, 301 – 314 (1995).

P. Pietramala, A note on a beam equation with nonlinear boundary conditions, Boundary-value Problems, 2011, Article ID 376782 (2011), 14 p., https://doi.org/10.1155/2011/376782 DOI: https://doi.org/10.1155/2011/376782

P. Pucci, J. Serrin, The strong maximum principle revisited, J. Different. Equat., 196, 1 – 66 (2004); Erratum, ibid. 207, no. 1, 226 – 227 (2004), https://doi.org/10.1016/j.jde.2004.09.002

P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. Math., Vol. 65, Amer. Math. Soc., Providence, RI (1986), https://doi.org/10.1090/cbms/065 DOI: https://doi.org/10.1090/cbms/065

B. Ricceri, A general variational principle and some of its applications, J. Comput. and Appl. Math., 113, no. 1-2, 401 – 410 (2000), https://doi.org/10.1016/S0377-0427(99)00269-1 DOI: https://doi.org/10.1016/S0377-0427(99)00269-1

V. Shanthi, N. Ramanujam, A numerical method for Boundary-value problems for singularly perturbed fourth-order ordinary differential equations, Appl. Math. and Comput., 129, no. 2-3, 269 – 294 (2002), https://doi.org/10.1016/S0096-3003(01)00040-6 DOI: https://doi.org/10.1016/S0096-3003(01)00040-6

W. Soedel, Vibrations of Shells and Plates, Dekker, New York, NY (1993).

S. Tersian, J. Chaparova, Periodic and homoclinic solutions of extended Fisher – Kolmogorov equations, J. Math. Anal. and Appl., 260, no. 2, 490 – 506 (2001), https://doi.org/10.1006/jmaa.2001.7470 DOI: https://doi.org/10.1006/jmaa.2001.7470

S. P. Timoshenko, Theory of elastic stability, McGraw-Hill Book, New York, NY (1961).

Q. L. Yao, Z. B. Bai, Existence of positive solution for the Boundary-value problem $u^{(4)}(t)-lambda h(t)f(u(t))=0$. (Chinese),Chinese Ann. Math., 20, no. 5, 575 – 578 (1999).

E. Zeidler, Nonlinear functional analysis and its applications, Vols. II/B and III, Springer, New York (1990, 1985), https://doi.org/10.1007/978-1-4612-5020-3 DOI: https://doi.org/10.1007/978-1-4612-5020-3

Опубліковано
20.11.2020
Як цитувати
ShokoohS., Afrouzi G. A., і HadjianA. «On the Existence of Solutions of One-Dimensional Fourth-Order Equations». Український математичний журнал, вип. 72, вип. 11, Листопад 2020, с. 1575-88, doi:10.37863/umzh.v72i11.569.
Розділ
Статті