Bounds for the right spectral radius of quaternionic matrices

  • I. Ali School Basic Sci., Indian Inst. Technology Indore, Simrol, India

Анотація

УДК 517.5 

Знайдено граничнi оцiнки для сум модулiв правих власних значень кватернiонних матриць. Як наслiдок, отримано оцiнки для правого спектрального радiуса таких матриць. У чотиривимiрних просторах знайдено мiнiмальний шар, який мiстить всi шари Гершгорiна матрицi кватернiонiв. Як застосування, запропоновано оцiнку для правих власних значень матриць кватернiонiв. Також наведено приклади для iлюстрацiї цих результатiв.

Посилання

S. L. Adler, Quaternionic quantum mechanics and quantum fields, International Series of Monographs on Physics, 88. Oxford Univ. Press, New York (1995) xii+586 pp. ISBN: 0-19-506643-X

S. S. Ahmad, I. Ali Bounds for eigenvalues of matrix polynomials over quaternion division algebra, Adv. Appl. Clifford Algebras, 26, № 4, 1095 – 1125 (2016). https://doi.org/10.1007/s00006-016-0640-7 DOI: https://doi.org/10.1007/s00006-016-0640-7

J. L. Brenner, Matrices of quaternions, Pacif. J. Math., 1, 329 – 335 (1951). https://msp.org/pjm/1951/1-3/pjm-v1-n3-p02-p.pdf

A. Bunse-Gerstner, R. Byers, V. Mehrmann, A quaternion QR algorithm, Numer. Math., 55, 83 – 95 (1989). https://doi.org/10.1007/BF01395873 DOI: https://doi.org/10.1007/BF01395873

J. H. Conway, D. A. Smith, On quaternions and octonions: their geometry, arithmetic, and symmetry, A. K. Peters Natick (2003). xii +159 pp. ISBN: 1-56881-134-9

T. L. Hankins, Sir William Rowan Hamilton, The Johns Hopkins Univ. Press, Baltimore (1980) {rm xxi}+474 pp. ISBN: 0-8018-2203-3

R. A. Horn, F. Zhang, A generalization of the complex Autonne – Takagi factorization to quaternion matrices, Linear and Multilinear Algebra, 60, 1239 – 1244 (2012). https://doi.org/10.1080/03081087.2011.618838 DOI: https://doi.org/10.1080/03081087.2011.618838

W. Junliang, Z. Yan, Estimate for the lower bound of rank and the upper bound of eigenvalues norms sum of given quaternion matrix, Comput. Math. and Appl., 59, 3160 – 3166 (2010). https://doi.org/10.1016/j.camwa.2010.02.041 DOI: https://doi.org/10.1016/j.camwa.2010.02.041

G. Opfer, Polynomials and Vandermonde matrices over the field the quaternions, Electron. Trans. Numer. Anal., 36, 9 – 16 (2009/10). https://etna.ricam.oeaw.ac.at/vol.36.2009-2010/pp9-16.dir/pp9-16.pdf

R. Pereira, Quaternionic polynomials and behavioral systems , Ph. D. Thesis, Univ. Aveira (2006)

R. Pereira, P. Rocha, On the determinant of quaternionic polynomial matrices and its application to system stability, Math. Methods Appl. Sci., 31, 99 – 122 (2008). https://doi.org/10.1002/mma.901 DOI: https://doi.org/10.1002/mma.901

R. Pereira, P. Rocha, P. Vettori, Algebraic tools for the study of quaternionic behavioral systems, Linear Algebra and Appl., 400, 121 – 140 (2005). https://doi.org/10.1016/j.laa.2005.01.008 DOI: https://doi.org/10.1016/j.laa.2005.01.008

S. Quaisar, L. Zou, Distribution for the standard eigenvalues of quaternion matrices, Int. Math. Forum, 7, 831 – 838 (2012). http://www.m-hikari.com/imf/imf-2012/17-20-2012/qaisarIMF17-20-2012.pdf

L. Rodman, Stability of invariant subspaces of quaternion matrices, Complex Anal. Oper. Theory, 6, 1069 – 1119 (2012). https://doi.org/10.1007/s11785-012-0233-y DOI: https://doi.org/10.1007/s11785-012-0233-y

L. Rodman, Topics in quaternion linear algebra, Princeton Univ. Press, Princeton, NJ (2014). https://doi.org/10.1515/9781400852741 DOI: https://doi.org/10.1515/9781400852741

W. So, Quaternionic left eigenvalue problem, Southeast Asian Bull. Math., 29, 555 – 565 (2005).

C. C. Took, D. P. Mandic, F. Zhang, On the unitary diagonalisation of a special class of quaternion matrices, Appl. Math. Lett., 24, 1806 – 1809 (2011). https://doi.org/10.1016/j.aml.2011.04.038 DOI: https://doi.org/10.1016/j.aml.2011.04.038

C. C. Took, D.P. Mandic, Augmented second-order statistics of quaternion random signals, Signal Processing, 91, 214 – 224 (2011). https://doi:10.1016/j.sigpro.2010.06.024 DOI: https://doi.org/10.1016/j.sigpro.2010.06.024

B. Tu, The generalization of schur theorem over quaternion division ring, Chinese Ann. Math., 2, 130 – 138 (1988).

J. Wu, Distribution and estimation for eigenvalues of real quaternion matrices, Comput. Math. and Appl., 55, 1998 – 2004 (2008). https://doi.org/10.1016/j.camwa.2007.07.013 DOI: https://doi.org/10.1016/j.camwa.2007.07.013

F. Zhang, Quaternions and matrices of quaternions, Linear Algebra and Appl., 251, 21 – 57 (1997). https://doi.org/10.1016/0024-3795(95)00543-9 DOI: https://doi.org/10.1016/0024-3795(95)00543-9

F. Zhang, Gersˇgorin type theorems for quaternionic matrices, Linear Algebra and Appl., 424, 139 – 155 (2007). https://doi.org/10.1016/j.laa.2006.08.004} DOI: https://doi.org/10.1016/j.laa.2006.08.004

L. Zou, Y. Jiang, J. Wu, Location for the right eigenvalues of quaternion matrices, J. Appl. and Math. Comput., 38, 71 – 83 (2012). https://doi.org/10.1007/s12190-010-0464-x DOI: https://doi.org/10.1007/s12190-010-0464-x

Опубліковано
25.05.2020
Як цитувати
AliI. «Bounds for the Right Spectral Radius of Quaternionic Matrices». Український математичний журнал, вип. 72, вип. 6, Травень 2020, с. 723-35, doi:10.37863/umzh.v72i6.6018.
Розділ
Статті