Fractional trapezium-like inequalities involving generalized relative semi-$(m, h_1, h_2 )$-preinvex mappings on an $m$-invex set

  • T. S. Du College Sci., China Three Gorges Univ. and Three Gorges Math. Res. Center, Yichang, China
  • C. Y. Luo College Sci., China Three Gorges Univ., Yichang, China
  • Z. Z. Huang College Sci., China Three Gorges Univ., Yichang, China
  • A. Kashuri University “Ismail Qemali”, Vlora, Albania
Ключові слова: Hermite-Hadamard’s inequality, Riemann-Liouville fractional integrals, relative semi-$(m, h_1, h_2)$-preinvex functions

Анотація

UDC 517.5

Дробовi нерiвностi типу трапецiї з узагальненими вiдносно напiв-$(m, h_1, h_2)$-преiнвексними вiдображеннями на $m$ -iнвекснiй множинi

Встановлено дробову інтегральну рівність для двічі диференційовних відображень на $m$-інвексній множині. За допомогою цієї рівності отримано нові оцінки для узагальнених нерівностей типу трапеції для відображень, у яких похідні другого порядку є узагальненими відносно напів-$(m,h_{1},h_{2})$-преінвексними через дробові інтеграли. Також обговорено деякі нові спеціальні випадки, що випливають з отриманих результатів.

Посилання

M. U. Awan, M. A. Noor, M. V. Mihai, K. I. Noor, Two point trapezoidal like inequalities involving hypergeometric functions , Filomat, 31, № 8, 2281 – 2292 (2017), https://doi.org/10.2298/fil1708281a DOI: https://doi.org/10.2298/FIL1708281A

F. X. Chen, Extensions of the Hermite – Hadamard inequality for convex functions via fractional integrals , J. Math. Inequal., 10, № 1, 75 – 81 (2016), https://doi.org/10.7153/jmi-10-07 DOI: https://doi.org/10.7153/jmi-10-07

X. S. Chen, Some properties of semi-$E$-convex functions , J. Math. Anal. Appl., 275, № 1, 251 – 262 (2002), https://doi.org/10.1016/S0022-247X(02)00325-6 DOI: https://doi.org/10.1016/S0022-247X(02)00325-6

S. S. Dragomir, Integral inequalities of the Hermite – Hadamard type for K-bounded norm-convex mappings , Ukrainian Math. J., 68, № 10, 1530 – 1551 (2017), https://doi.org/10.1007/s11253-017-1311-0 DOI: https://doi.org/10.1007/s11253-017-1311-0

T. S. Du, J. G. Liao, Y. J. Li, Properties and integral inequalities of Hadamard – Simpson type for the generalized $(s,m)$-preinvex functions , J. Nonlinear Sci. Appl., 9, № 5, 3112 – 3126 (2016), https://doi.org/10.22436/jnsa.009.05.102 DOI: https://doi.org/10.22436/jnsa.009.05.102

T. S. Du, Y. J. Li, Z. Q. Yang, A generalization of Simpson’s inequality via differentiable mapping using extended $(s,m)$-convex functions , Appl. Math. Comput., 293, 358 – 369 (2017), https://doi.org/10.1016/j.amc.2016.08.045 DOI: https://doi.org/10.1016/j.amc.2016.08.045

S.-R. Hwang, K.-L. Tseng, K.-C. Hsu, New inequalities for fractional integrals and their applications , Turkish J. Math., 40, № 3, 471 – 486 (2016), https://doi.org/10.3906/mat-1411-61 DOI: https://doi.org/10.3906/mat-1411-61

M. Iqbal, M. I. Bhatti, K. Nazeer, Generalization of inequalities analogous to Hermite – Hadamard inequality via fractional integrals , Bull. Korean Math. Soc., 52, № 3, 707 – 716 (2015), https://doi.org/10.4134/BKMS.2015.52.3.707 DOI: https://doi.org/10.4134/BKMS.2015.52.3.707

˙I. ˙İşcan, S. H. Wu, Hermite – Hadamard type inequalities for harmonically convex functions via fractional integrals , Appl. Math. Comput., 238, 237 – 244 (2014), https://doi.org/10.1016/j.amc.2014.04.020 DOI: https://doi.org/10.1016/j.amc.2014.04.020

A. Kashuri, R. Liko, Generalizations of Hermite – Hadamard and Ostrowski type inequalities for ${rm MT}_m$-preinvex functions , Proyecciones, 36, № 1, 45 – 80 (2017), https://doi.org/10.4067/S0716-09172017000100004 DOI: https://doi.org/10.4067/S0716-09172017000100004

M. A. Khan, T. Ali, S. S. Dragomir, Hermite – Hadamard type inequalities for conformable fractional integrals , Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Math., (2017), https://doi.org/10.1007/s13398-017-0408-5. DOI: https://doi.org/10.1007/s13398-017-0408-5

M. A. Latif, On some new inequalities of Hermite – Hadamard type for functions whose derivatives are s-convex in the second sense in the absolute value , Ukr. Math. J., 67, № 10, 1552 – 1571 (2016), https://doi.org/10.1007/s11253-016-1172-y DOI: https://doi.org/10.1007/s11253-016-1172-y

M. Matłoka, Some inequalities of Hadamard type for mappings whose second derivatives are $h$-convex via fractional integrals , J. Fract. Calc. and Appl., 6, № 1, 110 – 119 (2015).

M. A. Noor, G. Cristescu, M. U. Awan, Generalized fractional Hermite – Hadamard inequalities for twice differentiable $s$-convex functions , Filomat, 29, № 4, 807 – 815 (2015), https://doi.org/10.2298/FIL1504807N DOI: https://doi.org/10.2298/FIL1504807N

M. A. Noor, M. U. Awan, Some integral inequalities for two kinds of convexities via fractional integrals , Transilv. J. Math. and Mech., 5, № 2, 129 – 136 (2013).

M. E. Özdemir, A. Ekinci, Generalized integral inequalities for convex functions , Math. Inequal. and Appl., 19, № 4, 1429 – 1439 (2016), https://doi.org/10.7153/mia-19-106 DOI: https://doi.org/10.7153/mia-19-106

C. Peng, C. Zhou, T. S. Du, Riemann – Liouville fractional Simpson’s inequalities through generalized $(m,h_1,h_2)$-preinvexity , Ital. J. Pure and Appl. Math., 38, (2017), № 38 , 345 – 367 (2017).

S. Qaisar, M. Iqbal, and M. Muddassar, New Hermite – Hadamard’s inequalities for preinvex functions via fractional integrals , J. Comput. Anal. and Appl., 20, № 7, 1318 – 1328 (2016).

M. Z. Sarikaya, E. Set, H. Yaldiz, N. Ba¸sak, Hermite – Hadamard’s inequalities for fractional integrals and related fractional inequalities , Math. and Comput. Modelling, 57, 2403 – 2407 (2013). DOI: https://doi.org/10.1016/j.mcm.2011.12.048

J. Wang, J. Deng, M. Fečkan, Hermite – Hadamard-type inequalities for r-convex functions based on the use of Riemann – Liouville frantional integrals , Ukr. Math. J., 65, № 2, 193 – 211 (2013), https://doi.org/10.1007/s11253-013-0773-y DOI: https://doi.org/10.1007/s11253-013-0773-y

H. Wang, T. S. Du, Y. Zhang, $k$-fractional integral trapezium-like inequalities through $(h,m)$-convex and $(alpha ,m)$-convex mappings , J. Inequal. and Appl., 2017, Article ID 311 (2017), 20 p., https://doi.org/10.1186/s13660-017-1586-6 DOI: https://doi.org/10.1186/s13660-017-1586-6

B. Y. Xi, F. Qi, Hermite – Hadamard type inequalities for geometrically $r$-convex functions , Studia Sci. Math. Hungar., 51, № 4, 530 – 546 (2014) (2017), https://doi.org/10.1556/SScMath.51.2014.4.1294 DOI: https://doi.org/10.1556/sscmath.51.2014.4.1294

E. A. Youness, $E$-convex sets, $E$-convex functions, and $E$-convex programming , J. Optim. Theory and Appl., 102, № 2, 439 – 450 (1999), https://doi.org/10.1023/A:1021792726715 DOI: https://doi.org/10.1023/A:1021792726715

Y. C. Zhang, T. S. Du, J. Pan, On new inequalities of Fej´er-Hermite – Hadamard type for differentiable $(alpha ,m)$-preinvex mappings , Science Asia, 43, № 4, 258 – 266 (2017).

Опубліковано
24.12.2020
Як цитувати
DuT. S., Luo C. Y., Huang Z. Z., і Kashuri A. «Fractional Trapezium-Like Inequalities Involving Generalized Relative Semi-$(m, h_1, h_2 )$-Preinvex Mappings on an $m$-Invex Set». Український математичний журнал, вип. 72, вип. 12, Грудень 2020, с. 1633-50, doi:10.37863/umzh.v72i12.6036.
Розділ
Статті