Hyperbolically Lipschitz continuity, area distortion and coefficient estimates for $(K,K′)$-quasiconformal harmonic mappings of unit disk

  • Deguang Zhong Dep. Appl. Statistics, Guangdong Univ. Finance, Guangzhou, China
  • Wenjun Yuan Dep. Basic Course Teaching, Software Engineering Inst. Guangzhou, China
Ключові слова: (K, K′ )-quasiconformal mapping, hyperbolically Lipschitz continuous, area distortion, coefficient estimate

Анотація

УДК 517.51

Вивчаються гіперболічна неперервність за Ліпшицем, теорема про спотворення евклідових та гіперболічних облас\-тей, а також оцінки коефіцієнтів для $(K,K')$-квазіконформних гармонічних відображень одиничного диска в себе.

Посилання

A. Hern´andezmontes, L. O. Res´endis, Area distortion under certain classes of quasiconformal mappings, J. Inequal. and Appl., 2017, Article 211 (2017), https://doi.org/10.1186/s13660-017-1481-1 DOI: https://doi.org/10.1186/s13660-017-1481-1

D. Kalaj, M. Mateljevi´c, $(K,Kprime )$-quasiconformal harmonic mappings, Potential Analysis, 36, 117 – 135 (2012), https://doi.org/10.1007/s11118-011-9222-4 DOI: https://doi.org/10.1007/s11118-011-9222-4

D. Kalaj, On quasiconformal harmonic maps between surfaces, Int. Math. Res. Notices., 2015, № 2, 355 – 380 (2015), https://doi.org/10.1093/imrn/rnt203 DOI: https://doi.org/10.1093/imrn/rnt203

D. Kalaj, On harmonic quasiconformal self-mappings of the unit ball, Ann. Acad. Sci. Fenn. Math. 33, № 1, 261 – 271 (2008).

D. Partyka, K. Sakan, On bi-Lipschitz type inequalities for quasiconformal harmonic mappings, Ann. Acad. Sci. Fenn. Math., 32, № 2, 579 – 594 (2007).

E. Heinz, On one-to-one harmonic mappings, Pac. J. Math., 9, 101 – 105 (1959). DOI: https://doi.org/10.2140/pjm.1959.9.101

Jianfeng Zhu, Coefficients Estimate for Harmonic $v$-Bloch Mappings and Harmonic $K$-Quasiconformal Mappings, Bull. Malays. Math. Soc., 39, № 1, 349 – 358 (2016), https://doi.org/10.1007/s40840-015-0175-4 DOI: https://doi.org/10.1007/s40840-015-0175-4

K. Astala, Area distortion of quasiconformal mappings, Acta Math., 173, № 1, 37 – 60 (1994),https://doi.org/10.1007/BF02392568 DOI: https://doi.org/10.1007/BF02392568

M. Chen, X. Chen, $ (K,Kprime )$-quasiconformal harmonic mappings of the upper half plane onto itself, Ann. Acad. Sci. Fenn. Math., 37, № 1, 265 – 276 (2012),https://doi.org/10.5186/aasfm.2012.3716 DOI: https://doi.org/10.5186/aasfm.2012.3716

M. Knežević, M. Mateljević, On the quasi-isometries of harmonic quasiconformal mappings, J. Math. Anal. Appl., 334, № 1, 404 – 413 (2007), https://doi.org/10.1016/j.jmaa.2006.12.069 DOI: https://doi.org/10.1016/j.jmaa.2006.12.069

M. Pavlovi´c, Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk, Ann. Acad. Sci. Fenn. Math., 27, № 2, 365 – 372 (2002).

O. Martio, On harmonic quasiconformal mappings, Ann. Acad. Sci. Fenn., Ser. A I , 425, 3 – 10 (1968). DOI: https://doi.org/10.5186/aasfm.1969.425

RM. Porter, L. F. Res´endis, Quasiconformally explodable sets, Complex Var. Theory Appl., 36, 379 – 392(1998), https://doi.org/10.1080/17476939808815119 DOI: https://doi.org/10.1080/17476939808815119

T. Wan, Constant mean curvature surface, harmonic maps, and universal Teichm¨uller space, J. Different Geom., 35, № 4, 643 – 657 (1992).

Опубліковано
22.02.2021
Як цитувати
ZhongD., і YuanW. «Hyperbolically Lipschitz Continuity, Area Distortion and Coefficient Estimates for $(K,K′)$-Quasiconformal Harmonic Mappings of Unit Disk». Український математичний журнал, вип. 73, вип. 2, Лютий 2021, с. 151 -59, doi:10.37863/umzh.v73i2.6041.
Розділ
Статті