Deformed Hankel transform of Dini – Lipschitz functions

  • A. Elgargati Laboratory Fundamental and Applied Mathematics, Univ. Hassan II, Casablanca, Morocco
  • M. El Loualid Chouaib Doukkali Univ. El Jadida, Nat. School Applied Sci., Sci. Engineer Lab. Energy, El Jadida,Morocco https://orcid.org/0000-0002-2915-1772
  • R. Daher Laboratory Fundamental and Applied Mathematics, Univ. Hassan II, Casablanca, Morocco

Анотація

УДК 517.5
Деформоване перетворення Ганкеля функцiй Дiнi – Лiпшиця

Використовуючи узагальнену симетричну рiзницю $\Delta_{h}^{m}$ порядку $m$ i кроку $h>0,$, отримано аналог теорем Тiтчмарша [Introduction to the theory of Fourier integrals, Oxford Univ. Press (1948)] (теореми 84 i 85) для деформованого перетворення Ганкеля. Крiм того, наведено додаткове розширення вказаної теореми для функцiй у $L_k^{p}$ з абстрактною деформованою умовою Ганкеля – Дiнi – Лiпшиця.

Посилання

S. Ben Saïd, A product formula and convolution structure for a $k$-Hankel transform on $R$, J. Math. Anal. and Appl., 463, № 2, 1132 – 1146 (2018), https://doi.org/10.1016/j.jmaa.2018.03.073 DOI: https://doi.org/10.1016/j.jmaa.2018.03.073

Salem Ben Sad, Mohamed Amine Boubatra, Mohamed Sifi, On the deformed Besov – Hankel spaces, Opuscula Math., 40, № 2, 171 – 207 (2020); https://doi.org/10.7494/OpMath.2020.40.2.171 DOI: https://doi.org/10.7494/OpMath.2020.40.2.171

A. Achak, R. Daher, L. Dhaouadi, El Loualid, An analog of Titchmarsh’s theorem for the $q$-Bessel transform, Ann. Univ. Ferrara, 65, № 113 (2019); https://doi.org/10.1007/s11565-018-0309-3 DOI: https://doi.org/10.1007/s11565-018-0309-3

R. Daher, M. Hamma, An analog of Titchmarsh’s theorem of Jacobi transform, Int. J. Math. Anal., 6, № 20, 975 – 981 (2012).

R. Daher, M. El Hamma, A. El Houasni, Titchmarsh’s theorem for the Bessel transform, Matematika, 28, № 2, 127 – 131 (2012); https://doi.org/10.11113/matematika.v28.n.567

S. Negzaoui, Lipschitz conditions in Laguerre hypergroup, Mediterr. J. Math., 14, № 191 (2017); https://doi.org/10.1007/s00009-017-0989-4 DOI: https://doi.org/10.1007/s00009-017-0989-4

S. S. Platonov, The Fourier transform of functions satisfying the Lipschitz condition on rank 1 symmetric spaces, Sib. Mat. J., 46, № 6, 1108 – 1118 (2005), https://doi.org/10.1007/s11202-005-0105-z DOI: https://doi.org/10.1007/s11202-005-0105-z

E. S. Titchmarsh, Introduction to the theory of Fourier integrals, Oxford Univ. Press (1948).

Опубліковано
04.10.2022
Як цитувати
Elgargati A., LoualidM. E., і DaherR. «Deformed Hankel Transform of Dini – Lipschitz Functions». Український математичний журнал, вип. 74, вип. 8, Жовтень 2022, с. 1118 -27, doi:10.37863/umzh.v74i8.6134.
Розділ
Статті