Admissible integral manifolds for partial neutral functional-differential equations
Анотація
УДК 517.9
Допустимі інтегральні многовиди для нейтральних функціонально-диференціальних рівнянь
Доведено існування та властивість притягання для допустимих інваріантних нестійких та центрально-нестійких многовидів допустимих класів розв’язків нейтрального функціонально-диференціального рівняння з частинними похідними в банаховому просторі $X$ вигляду \begin{align*}& \dfrac{\partial}{\partial t}Fu_t= A(t)Fu_t +f(t,u_t),\quad t \ge s,\quad t,s\in\mathbb{R},\\& u_s=\phi\in\mathcal{C}:= C([-r, 0], X)\end{align*} за умови, що множина лінійних операторів частинного диференціювання $\left(A(t)\right)_{t\in\mathbb{R}}$ породжує еволюційну множину $\left(U(t,s)\right)_{ t\geq s},$ що має експоненціальну дихотомію на всій прямій $\mathbb{R};$ різницевий оператор $ F\colon\mathcal{C}\to X$ є обмеженим і лінійним, а нелінійний оператор затримки $f$ задовольняє умову $\varphi$-Ліпшиця, тобто $ \|f(t,\phi)-f(t,\psi)\|\leq \varphi(t)\|\phi-\psi\|_{\mathcal{C}}$ для $\phi,\psi \in\mathcal{C},$ де $\varphi(\cdot)$ належить допустимому функціональному простору, визначеному на $\mathbb{R}.$ Ми також доводимо, що нестійкий многовид з допустимого класу притягує всі інші розв'язки з експоненціальною швидкістю. Наш основний метод базується на рівнянні Ляпунова – Перрона в поєднанні з допустимістю функціональних просторів. Отримані результати застосовано до рівняння теплопровідності зі скінченною затримкою для матеріалу з пам’яттю.
Посилання
Nguyen Thieu Huy, Invariant manifolds of admissible classes for semi-linear evolution equations, J. Different. Equat., 246, 1820 – 1844 (2009).
Nguyen Thieu Huy, Stable manifolds for semi-linear evolution equations and admissibility of function spaces on a half-line, J. Math. Anal. and Appl., 354, 372 – 386 (2009).
Nguyen Thieu Huy, Pham Van Bang, Hyperbolicity of solution semigroups for linear neutral differential equations, Semigroup Forum, 84, 216 – 228 (2012).
Nguyen Thieu Huy, Pham Van Bang, Unstable manifolds for partial neutral differential equations and admissibility of function spaces, Acta Math. Vietnam, 42, 187 – 207 (2017).
N. T. Huy, V. T. N. Ha, Admissible integral manifolds for semi-linear evolution equations,} Ann. Polon. Math., 112, 127 – 163 (2014).
N. T. Huy, T. V. Duoc, D. X. Khanh, Attraction property of admissible integral manifolds and applications to Fisher – Kolmogorov model,} Taiwanese J. Math., 20, 365 – 385 (2016).
J. J. Massera, J. J. Sch"{a}ffer, Linear differential equations and function spaces, Acad. Press, New York (1966).
N. V. Minh, F. R"{a}biger, R. Schnaubelt, Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half line, Integral Equations and Operator Theory, 32, 332 – 353 (1998).
N. V. Minh, J. Wu, Invariant manifolds of partial functional differential equations, J. Different. Equat., 198, 381 – 421 (2004).
R. Nagel, G. Nickel, Well-posedness for non-autonomous abstract Cauchy problems, Progr. Nonlinear Different. Equat. and Appl., 50, 279 – 293 (2002).
A. Pazy, Semigroup of linear operators and application to partial differential equations, Springer-Verlag, Berlin (1983).
H. Petzeltov'a, O. J. Staffans, Spectral decomposition and invariant manifolds for some functional partial differential equations, J. Different. Equat., 138, 301 – 327 (1997).
J. Wu, Theory and applications of partial functional differential equations, Springer-Verlag (1996).
Авторські права (c) 2022 Thieu Huy Nguyen
Для цієї роботи діють умови ліцензії Creative Commons Attribution 4.0 International License.