On Skorokhod differentiable measures
Анотація
UDC 519.21
Про міри, диференційовні за Скороходом
Наведено огляд диференцiйовностi мiр за Скороходом на лiнiйних просторах, який мiстить також новi доведення деяких ключових результатiв у цiй областi разом iз низкою нових спостережeнь.
Посилання
H. Airault, P. Malliavin, Intégration géométrique sur l'espace de Wiener. (French), Bull. Sci. Math. (2), 112, No. 1, 3 – 52 (1988)
A. D. Alexandroff, Additive set functions in abstract spaces, Rec. Math. [Mat. Sb.] (N.S.), 8, 307 – 348 (1940); 9, 563 – 628 (1941); 13, 169 – 238 (1943)
L. Ambrosio, S. Di Marino, Equivalent definitions of $BV$ space and of total variation on metric measure spaces, J. Funct. Anal., 266, 4150 – 4188 (2014), https://doi.org/10.1016/j.jfa.2014.02.002 DOI: https://doi.org/10.1016/j.jfa.2014.02.002
L. Ambrosio, M. Miranda (jr.), S. Maniglia, D. Pallara, $BV$ functions in abstract Wiener spaces, J. Funct. Anal., 258, No. 3, 785 – 813 (2010), https://doi.org/10.1016/j.jfa.2009.09.008 DOI: https://doi.org/10.1016/j.jfa.2009.09.008
V. I. Averbuh, O. G. Smolyanov, S. V. Fomin, Generalized functions and differential equations in linear spaces. I, Differentiable measures (Russian), Trudy Mosk. Mat. Obshch., 24, 133 – 174 (1971); English translation: Trans. Moscow Math. Soc., 24, 140 – 184 (1971)
V. I. Bogachev, Negligible sets in locally convex spaces (Russian), Mat. Zametki, 36, No. 1, 51 – 64 (1984); English translation: Math. Notes, 36, 519 – 526 (1984)
V. I. Bogachev,Some results on differentiable measures (Russian), Mat. Sb., 127(169), 336 – 351 (1985); English translation: Math. USSR Sb., 55, No. 2, 335 – 349 (1986)
V. I. Bogachev, On Skorokhod differentiability of measures (Russian), Teor. Verojatn. i Primen., 33, No. 2, 349 – 354 (1988); English translation: Theory Probab. and Appl., 33, 330 – 334 (1988)
V. I. Bogachev, Subspaces of differentiability of smooth measures on infinite-dimensional spaces (Russian), Dokl. Akad. NaukSSSR, 299, No. 1, 18 – 22 (1988); English translation: Sov. Math. Dokl., 37, No. 2, 304 – 308 (1988)
V. I. Bogachev, Gaussian measures, Mathematical Surveys and Monographs, 62, Amer. Math. Soc., Providence, Rhode Island (1998). xii+433 pp. ISBN: 0-8218-1054-5, https://doi.org/10.1090/surv/062 DOI: https://doi.org/10.1090/surv/062
V. I. Bogachev, Measure theory, Vols. 1, 2, Springer, Berlin (2007). Vol. I: xviii+500 pp., Vol. II: xiv+575 pp. ISBN: 978-3-540-34513-8; 3-540-34513-2, https://doi.org/10.1007/978-3-540-34514-5 DOI: https://doi.org/10.1007/978-3-540-34514-5
V. I. Bogachev, Differentiable measures and the Malliavin calculus, Amer. Math. Soc., Providence, Rhode Island (2010), xvi+488 pp. ISBN: 978-0-8218-4993-4, https://doi.org/10.1090/surv/164 DOI: https://doi.org/10.1090/surv/164
V. I. Bogachev, Sobolev classes on infinite-dimensional spaces, Geometric Measure Theory and Real Analysis, Series 17 Ed. Norm., Pisa, 1 – 56 (2014) DOI: https://doi.org/10.1007/978-88-7642-523-3_1
V. I. Bogachev, Distributions of polynomials on multidimensional and infinite-dimensional spaces with measures (Russian) , Uspekhi Mat. Nauk, 71, No. 4, 107 – 154 (2016); English translation: Russian Math. Surveys, 71, No. 4, 703 – 749 (2016), https://doi.org/10.4213/rm9721
V. I. Bogachev, Surface measures in infinite-dimensional spaces, Measure Theory in Non-smooth Spaces, De Gruyter Open, Warsaw, p. 52 – 97 (2017) DOI: https://doi.org/10.1515/9783110550832-002
V. I. Bogachev, Weak convergence of measures, Mathematical Surveys and Monographs, 234, American Mathematical Society, Providence, RI, xii+286 pp. ISBN: 978-1-4704-4738-0 (2018), https://doi.org/10.1090/surv/234 DOI: https://doi.org/10.1090/surv/234
V. I. Bogachev, E. D. Kosov, S. N. Popova, A characterization of Nikolskii – Besov classes via integration by parts (Russian), translated from Dokl. Akad. Nauk, 476, No. 3, 251 – 255 (2017); English translation: Dokl. Math., 96, No. 2, 449 – 453 (2017), https://doi.org/10.1134/s106456241705012x
V. I. Bogachev, E. D. Kosov, S. N. Popova, On Gaussian Nikolskii – Besov classes (Russian), Dokl. Akad. Nauk, 476, No. 6, 609 – 613 (2017); English translation: Dokl. Math., 96, No. 2, 498 – 502 (2017), https://doi.org/10.1134/s1064562417050295
V. I. Bogachev, E. D. Kosov, S. N. Popova, A new approach to Nikolskii – Besov classes, Moscow Math. J., 19, No. 4,619 – 654 (2019), https://doi.org/10.17323/1609-4514-2019-19-4-619-654 DOI: https://doi.org/10.17323/1609-4514-2019-19-4-619-654
V. I. Bogachev, E. D. Kosov, G. I. Zelenov, Fractional smoothness of distributions of polynomials and a fractional analog of the Hardy – Landau – Littlewood inequality, Trans. Amer. Math. Soc., 370, No. 6, 4401 – 4432 (2018), https://doi.org/10.1090/tran/7181 DOI: https://doi.org/10.1090/tran/7181
V. I. Bogachev, I. I. Malofeev, Surface measures generated by differentiable measures, Potential Anal., 44, No. 4, 767 – 792 (2016), https://doi.org/10.1007/s11118-015-9530-1 DOI: https://doi.org/10.1007/s11118-015-9530-1
V. I. Bogachev, A. Yu. Pilipenko, E. A. Rebrova, Classes of functions of bounded variation on infinite-dimensional domains (Russian), Dokl. Akad. Nauk, 451, No. 2, 127 – 131 (2013); English translation: Dokl. Math., 88, No. 1, 391 – 395 (2013), https://doi.org/10.1134/s1064562413040078
V. I. Bogachev, A. Yu. Pilipenko, A. V. Shaposhnikov, Sobolev functions on infinite-dimensional domains, J. Math. Anal. and Appl., 419, 1023 – 1044 (2014), https://doi.org/10.1016/j.jmaa.2014.05.020 DOI: https://doi.org/10.1016/j.jmaa.2014.05.020
V. I. Bogachev, E. A. Rebrova, Functions of bounded variation on infinite-dimensional spaces with measures (Russian), Dokl. Akad. Nauk, 449, No. 2, 131 – 135 (2013); English translation: Dokl. Math., 87, No. 2, 144 – 147 (2013), https://doi.org/10.1134/s1064562413020063
V. I. Bogachev, O. G. Smolyanov, Analytic properties of infinite dimensional distributions (Russian), Russian Math. Surveys, 45, No. 3, 1 – 104 (1990), https://doi.org/10.1070/RM1990v045n03ABEH002364 DOI: https://doi.org/10.1070/RM1990v045n03ABEH002364
V. I. Bogachev, O. G. Smolyanov, Topological vector spaces and their applications, Springer, Cham (2017). x + 456 pp. ISBN: 978-3-319-57116-4; 978-3-319-57117-1, https://doi.org/10.1007/978-3-319-57117-1 DOI: https://doi.org/10.1007/978-3-319-57117-1
V. I. Bogachev, O. G. Smolyanov, Real and functional analysis, Springer, Cham (2020). DOI: https://doi.org/10.1007/978-3-030-38219-3
V. Caselles, A. Lunardi, M. Miranda (jr.), M. Novaga, Perimeter of sublevel sets in infinite dimensional spaces, Adv. Calc. Var., 5, No. 1, 59 – 76 (2012), https://doi.org/10.1515/acv.2011.010 DOI: https://doi.org/10.1515/acv.2011.010
P. Celada, A. Lunardi, Traces of Sobolev functions on regular surfaces in infinite dimensions, J. Funct. Anal., 266, 1948 – 1987 (2014), https://doi.org/10.1016/j.jfa.2013.11.013 DOI: https://doi.org/10.1016/j.jfa.2013.11.013
G. Da Prato, A. Lunardi, L. Tubaro, Surface measures in infinite dimension, Rend. Lincei, 25, No. 3, 309 – 330 (2014), https://doi.org/10.4171/RLM/681 DOI: https://doi.org/10.4171/RLM/681
G. Da Prato, A. Lunardi, L. Tubaro, Malliavin calculus for non Gaussian differentiable measures and surface measures in Hilbert spaces, Trans. Amer. Math. Soc., 370, No. 8, 5795 – 5842 (2018), https://doi.org/10.1090/tran/7195 DOI: https://doi.org/10.1090/tran/7195
Yu. L. Dalecky, S. V. Fomin, Measures and differential equations in infinite-dimensional space , Kluwer Acad. Publ., Dordrecht (1991), xvi + 337 pp. ISBN: 0-7923-1517-0, https://doi.org/10.1007/978-94-011-2600-7 DOI: https://doi.org/10.1007/978-94-011-2600-7
G. M. Fichtenholz, On absolutely continuous functions , Mat. Sb., 31, No. 2, 286 – 295 (1923)
S. V. Fomin, Differentiable measures in linear spaces , Proc. Int. Congr. Math., Sec. 5, 78 – 79 (1966) (in Russian)
S. V. Fomin, Differentiable measures in linear spaces , Uspekhi Mat. Nauk, 23, No. 1, 221 – 222 (1968)
M. Fukushima, $BV$ functions and distorted Ornstein – Uhlenbeck processes over the abstract Wiener space , J. Funct. Anal., 174, No. 1, 227 – 249 (2000), https://doi.org/10.1006/jfan.2000.3576 DOI: https://doi.org/10.1006/jfan.2000.3576
M. Fukushima, M. Hino, On the space of BV functions and a related stochastic calculus in infinite dimensions , J. Funct. Anal., 183, No. 1, 245 – 268 (2001), https://doi.org/10.1006/jfan.2000.3738 DOI: https://doi.org/10.1006/jfan.2000.3738
M. Hino, Sets of finite perimeter and the Hausdorff – Gauss measure on the Wiener space , J. Funct. Anal., 258, No. 5, 1656 – 1681 (2010), https://doi.org/10.1016/j.jfa.2009.06.033 DOI: https://doi.org/10.1016/j.jfa.2009.06.033
M. Hino, Dirichlet spaces on $H$-convex sets in Wiener space , Bull. Sci. Math., 135, (6–7), 667 – 683 (2011); Erratum: ibid, 137, no. 5, 688 – 689 (2013), https://doi.org/10.1016/j.bulsci.2012.12.002
E. D. Kosov, Besov classes on finite and infinite dimensional spaces (Russian), Mat. Sb., 210, No. 5, 41 – 71 (2019); English translation: Sb. Math., 210, No. 5, 663 – 692 (2019), https://doi.org/10.4213/sm9058
E. P. Krugova, On differentiability of convex measures , Mat. Zametki, 57, No. 6, 51 – 61 (1995); English translation: Math. Notes., 58, No. 6, 1294 – 1301 (1995), https://doi.org/10.1007/BF02304888
A. M. Kulik, Log-Sobolev inequality, exponential integrability and large deviation estimates for $C(alpha,beta)$ log-concave measures , Random Oper. and Stoch. Equat., 10, No. 2, 105 – 122 (2002), https://doi.org/10.1515/rose.2002.10.2.105 DOI: https://doi.org/10.1515/rose.2002.10.2.105
A. Lunardi, M. Miranda (jr.), D. Pallara, $BV$ functions on convex domains in Wiener spaces , Potential Anal., 43, 23 – 48 (2015), https://doi.org/10.1007/s11118-015-9462-9 DOI: https://doi.org/10.1007/s11118-015-9462-9
T. S. Pitcher, Likelihood ratios for diffusion processes with shifted mean value , Trans. Amer. Math. Soc., 101, 168 – 176 (1961), https://doi.org/10.2307/1993417 DOI: https://doi.org/10.2307/1993417
M. Röckner, R.-Ch. Zhu, X.-Ch. Zhu, ¨ The stochastic reflection problem on an infinite dimensional convex set and $BV$ functions in a Gelfand triple , Ann. Probab., 40, No. 4, 1759 – 1794 (2012), https://doi.org/10.1214/11-AOP661 DOI: https://doi.org/10.1214/11-AOP661
M. Röckner, R. Zhu, X. Zhu, ¨$BV$ functions in a Gelfand triple for differentiable measures and its applications , Forum Math., 27, No. 3, 1657 – 1687 (2015), https://doi.org/10.1515/forum-2012-0137 DOI: https://doi.org/10.1515/forum-2012-0137
V. A. Romanov, On continuous and totally discontinuous measures in linear spaces (Russian), Dokl. Akad. Nauk SSSR, 227, No. 3, 569 – 570 (1976); English translation: Sov. Math. Dokl., 17, 472 – 474 (1976).
A. V. Shaposhnikov, Differentiability of measures in the sense of Skorokhod and related properties , Dokl. Akad. Nauk, 429, No. 2, 163 – 167 (2009); English translation: Dokl. Math., 80, 818 – 822 (2009), https://doi.org/10.1134/S106456240906009X
A. V. Skorohod, Integration in Hilbert space , Integration in Hilbert space. Translated from the Russian by Kenneth Wickwire. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 79. Springer-Verlag, New York-Heidelberg (1974). xii + 177 pp.
O. G. Smolyanov, Analysis on topological vector spaces and its applications , Izdat. Moskov. Gos. Univ., Moscow (1979) (in Russian).
O. G. Smolyanov, H. von Weizsäckerr, ¨Differentiable families of measures , J. Funct. Anal., 118, No. 2, 454 – 476 (1993), https://doi.org/10.1006/jfan.1993.1151 DOI: https://doi.org/10.1006/jfan.1993.1151
A. V. Uglanov, Integration on infinite-dimensional surfaces and its applications , Kluwer Acad. Publ., Dordrecht (2000). x+262 pp. ISBN: 0-7923-6133-4, https://doi.org/10.1007/978-94-015-9622-0 DOI: https://doi.org/10.1007/978-94-015-9622-0
W. Ziemer, Weakly differentiable functions , Springer-Verlag, New York, Berlin (1989). xvi + 308 pp. ISBN: 0-387-97017-7, https://doi.org/10.1007/978-1-4612-1015-3 DOI: https://doi.org/10.1007/978-1-4612-1015-3
Авторські права (c) 2020 Володимир Ігорович Богачов
Для цієї роботи діють умови ліцензії Creative Commons Attribution 4.0 International License.