Умови iснування базових розв’язкiв лiнiйних множиннозначних диференцiальних рiвнянь

  • Т. О. Комлєва Одес. держ. акад. буд-ва та архiтектури
  • А. В. Плотніков Одес. держ. акад. буд-ва та архiтектури https://orcid.org/0000-0002-7864-0732
  • Л. І. Плотнікова Одеський національний політехнічний університет
  • Н. В. Скрипник Одеський національний університет ім. І.І. Мечникова
Ключові слова: множиннозначне диференціальне рівняння, похідна Хукухари, умови існування

Анотація

УДК 517.9

Розглянуто різні означення похідної множиннозначного відображення
та їхні властивості. Вивчається лінійне множиннозначне диференціальне рівняння та досліджується існування розв'язків цього рівняння з похідною Хукухари, PS-похідною
та BG-похідною. Отримані результати проілюстровано на модельних прикладах.

Посилання

F. S. de Blasi, F. Iervolino, Equazioni differentiali con soluzioni a valore compatto convesso, (Italian), Boll. Unione Mat. Ital., 2, No. 4-5, 491 - 501 (1969)

V. Lakshmikantham, T. Granna Bhaskar, J. Vasundhara Devi, Theory of set differential equations in metric spaces, Cambridge Sci. Publ. (2006).

V. Lupulescu, D. O’Regan, A new derivative concept for set-valued and fuzzy-valued functions. Differential and integral calculus in quasilinear metric spaces, Fuzzy Sets and Syst., 404, 75 – 110 (2021). DOI: https://doi.org/10.1016/j.fss.2020.04.002

A. A. Martynyuk, Qualitative analysis of set-valued differential equations, Springer Nature Switzerland AG, Birkhäuser, Cham (2019), https://doi.org/10.1007/978-3-030-07644-3 DOI: https://doi.org/10.1007/978-3-030-07644-3

N. A. Perestyuk, V. A. Plotnikov, A. M. Samoilenko, N. V. Skripnik, Differential equations with impulse effects: multivalued right-hand sides with discontinuities, de Gruyter Stud. Math., 40, Walter De Gruyter GmbH& Co, Berlin; Boston (2011), https://doi.org/10.1515/9783110218176 DOI: https://doi.org/10.1515/9783110218176

A. V. Plotnikov, N. V. Skripnik, Дифференциальные уравнения с «четкой» и нечеткой многозначной правой частью. Асимптотические методы (Russian) [[Differenczial`ny`e uravneniya s “chetkoj” i nechetkoj mnogoznachnoj pravoj chast`yu. Asimptoticheskie metody]], AstroPrint, Odessa (2009)

V. A. Plotnikov, A. V. Plotnikov, A. N. Vityuk, Дифференциальные уравнения с многозначной правой частью. Асимптотические методы (Russian) Differenczial`ny`e uravneniya s mnogoznachnoj pravoj chast`yu.Asimptoticheskie metody]], AstroPrint, Odessa (1999).

A. Tolstonogov, Differential inclusions in a Banach space, Kluwer Acad. Publ., Dordrecht (2000), https://doi.org/10.1007/978-94-015-9490-5 DOI: https://doi.org/10.1007/978-94-015-9490-5

A. V. Plotnikov, T. A. Komleva, L. I. Plotnikova, Averaging of a system of set-valued differential equations with the Hukuhara derivative, J. Uncertain Syst., 13, 3 – 13 (2019).

M. Hukuhara, Integration des applications mesurables dont la valeur est un compact convexe, (French), Funkcial. Ekvac., 10, 205 - 223 (1967).

H. Minkowski, Zur Geometrie der Zahlen, Verhandlungen des III Internationalen Mathematiker-Kongresses in Heidelberg, Heidelberg, Berlin (1904), p. 164 – 173.

T. A. Komleva, L. I. Plotnikova, N. V. Skripnik, A. V. Plotnikov, Some remarks on linear set-valued differential equations, Stud. Univ. Babe¸s-Bolyai Math., 65, № 3, 415 – 431 (2020); https://doi.org/10.24193/subbmath.2020.3.09 DOI: https://doi.org/10.24193/subbmath.2020.3.09

A. V. Plotnikov, N. V. Skripnik, Set-valued differential equations with generalized derivative, J. Adv. Res. Pure Math., 3, № 1, 144 – 160 (2011); https://doi.org/10.5373/jarpm.475.062210 DOI: https://doi.org/10.5373/jarpm.475.062210

¸ S. E. Amrahov, A. Khastan, N. Gasilov, A. G. Fatullayev, Relationship between Bede – Gal differentiable set-valued functions and their associated support functions, Fuzzy Sets and Syst., 265, 57 – 72 (2016); https://doi.org/10.1016/j.fss.2015.12.002 DOI: https://doi.org/10.1016/j.fss.2015.12.002

M. T. Malinowski, Second type Hukuhara differentiable solutions to the delay set-valued differential equations, Appl. Math. and Comput., 218, 9427 – 9437 (2012); https://doi.org/10.1016/j.amc.2012.03.027. DOI: https://doi.org/10.1016/j.amc.2012.03.027

M. T. Malinowski, On set differential equations in Banach spaces — a second type Hukuhara differentiability approach, Appl. Math. and Comput., 219, 289 – 305 (2012); https://doi.org/10.1016/j.amc.2012.06.019. DOI: https://doi.org/10.1016/j.amc.2012.06.019

H. Vu, L. S. Dong, Initial value problem for second-order random fuzzy differential equations, Adv. Difference Equat., 2015, Article 373 (2015), 23 p.; DOI: https://doi.org/10.1186/s13662-015-0710-5 DOI: https://doi.org/10.1186/s13662-015-0710-5

H. Vu, N. Van Hoa, On impulsive fuzzy functional differential equations, Iran. J. Fuzzy Syst., 13, № 4, 79 – 94 (2016); https://doi.org/10.22111/IJFS.2016.2597

E. S. Polovinkin, Mnogoznachny`j analiz i differenczial`ny`e vklyucheniya, Fizmatlit, Moskva (2014).

T. F. Bridgland, Trajectory integrals of set valued functions, Pacif. J. Math., 33, № 1, 43 – 68 (1970). DOI: https://doi.org/10.2140/pjm.1970.33.43

H. T. Banks, M. Q. Jacobs, A differential calculus for multifunctions, J. Math. Anal. and Appl., 29, 246 – 272 (1970); https://doi.org/10.1016/0022-247X(70)90078-8 DOI: https://doi.org/10.1016/0022-247X(70)90078-8

Yu. N. Tyurin, Mathematical statement of the simplified model of industrial planning (in Russian), Econ. Math. Meth., 3, 391 – 409 (1965).

A. V. Plotnikov, Differenczirovanie mnogoznachny`kh otobrazhenij, $T $-proizvodnaya, Ukr. mat. zhurn., 52, № 8, 1119 – 1126 (2000).

Y. Chalco-Cano, H. Roman-Flores, M. D. Jimenez-Gamero, Generalized derivative and pi -derivative for set-valued functions, Inform. Sci., 181, № 11, 2177 – 2188 (2011); https://doi.org/10.1016/j.ins.2011.01.023. DOI: https://doi.org/10.1016/j.ins.2011.01.023

A. Lasota, A. Strauss, Asymptotic behavior for differential equations which cannot be locally linearized, J. Different. Equat., 10, 152 – 172 (1971); https://doi.org/10.1016/0022-0396(71)90103-3 DOI: https://doi.org/10.1016/0022-0396(71)90103-3

M. Martelli, A. Vignoli, On differentiability of multi-valued maps, Boll. Unione Mat. Ital., 10, 701 – 712 (1974).

N. V. Plotnikova, Systems of linear differential equations with $pi$ -derivative and linear differential inclusions, Sb. Math., 196, № 11, 1677 – 1691 (2005); https://doi.org/10.1070/SM2005v196n11ABEH003727. DOI: https://doi.org/10.1070/SM2005v196n11ABEH003726

N. V. Hoa, N. D. Phu, Fuzzy functional integro-differential equations under generalized H-differentiability, J. Intell. Fuzzy Syst., 26, 2073 – 2085 (2014); https://doi.org/10.3233/IFS-130883. DOI: https://doi.org/10.3233/IFS-130883

N. D. Phu, N. N. Hung, Minimum stability control problem and time-optimal control problem for fuzzy linear control systems, Fuzzy Sets and Syst., 371, 1 – 24 (2019); DOI: https://doi.org/10.1016/j.fss.2018.09.005. DOI: https://doi.org/10.1016/j.fss.2018.09.005

B. Bede, S. G. Gal, Almost periodic fuzzy-number-valued functions, Fuzzy Sets and Syst., 147, 385 – 403 (2004); https://doi.org/ 10.1016/j.fss.2003.08.004 DOI: https://doi.org/10.1016/j.fss.2003.08.004

B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equation, Fuzzy Sets and Syst., 151, 581 – 599 (2005); https://doi.org/ 10.1016/j.fss.2004.08.001 DOI: https://doi.org/10.1016/j.fss.2004.08.001

L. Stefanini, B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Anal., 71, 1311 – 1328 (2009); https://doi.org/10.1016/j.na.2008.12.005 DOI: https://doi.org/10.1016/j.na.2008.12.005

N. V. Plotnikova,Approksimacziya puchka reshenij linejny`kh differenczial`ny`kh vklyuchenij, Nelinijni kolivannya, 9, № 3, 386 – 400 (2006).

V. G. Boltyanski, J. Jer´onimo Castro, Centrally symmetric convex sets, J. Convex Anal., 14, № 2, 345 – 351 (2007).

A. V. Plotnikov, N. V. Skripnik, Existence and uniqueness theorems for generalized set differential equations, Int. J. Control Sci. and Eng., 2, № 1, 1 – 6 (2012); https://doi.org/10.5923/j.control.20120201.01. DOI: https://doi.org/10.5923/j.Control.20120201.01

A. V. Plotnikov, N. V. Skripnik, An existence and uniqueness theorem to the Cauchy problem for generalized set differential equations, Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal., 20, № 4, 433 – 445 (2013).

A. V. Plotnikov, N. V. Skripnik, Mnogoznachny`e differenczial`ny`e uravneniya s obobshhennoj proizvodnoj, Ukr. mat. zhurn., 65, № 10, 1350 – 1362 (2013).

Опубліковано
24.05.2021
Як цитувати
КомлєваТ. О., ПлотніковА. В., ПлотніковаЛ. І., і Скрипник Н. В. «Умови iснування базових розв’язкiв лiнiйних множиннозначних диференцiальних рiвнянь». Український математичний журнал, вип. 73, вип. 5, Травень 2021, с. 651 -73, doi:10.37863/umzh.v73i5.6356.
Розділ
Статті