Covering codes of a graph associated to a finite vector space

  • M. Murtaza Centre Adv. Studies in Pure and Appl. Math., Bahauddin Zakariya Univ.,Multan, Pakistan https://orcid.org/0000-0002-1468-1316
  • I. Javaid Centre Adv. Studies in Pure and Appl. Math., Bahauddin Zakariya Univ.,Multan, Pakistan
  • M. Fazil Centre Adv. Studies in Pure and Appl. Math., Bahauddin Zakariya Univ.,Multan, Pakistan

Анотація

УДК 512.5

Коди покриття графа, що пов’язаний зi скiнченним векторним простором

Дослiджується задача покриття вершин графа, що пов’язаний iз скiнченним векторним простором, як це визначено у [A. Das, Commun. Algebra, 44, 3918 – 3926 (2016)], так що ми можемо однозначно iдентифiкувати будь-яку вершинуза вершинами, що її накривають. У цiй роботi використовуються множини локацiї–домiнацiї, а також iдентифiкацiйнi коди, якi у даному випадку є дуже близькими поняттями. Знайденi числа локацiї–домiнацiї та iдентифiкацiйне число для графа, та вивчена властивiсть обмiну для множин локацiї–домiнацiї та iдентифiкацiйних кодiв.

Біографічна довідка автора

M. Fazil , Centre Adv. Studies in Pure and Appl. Math., Bahauddin Zakariya Univ.,Multan, Pakistan

 

 

Посилання

D. F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217, 434 – 447 (1999), https://doi.org/10.1006/jabr.1998.7840 DOI: https://doi.org/10.1006/jabr.1998.7840

C. Bates, D. Bondy, S. Perkins, P. Rowley, Commuting involution graphs for symmetric groups, J. Algebra, 266, 133 – 153 (2003), https://doi.org/10.1016/S0021-8693(03)00302-8 DOI: https://doi.org/10.1016/S0021-8693(03)00302-8

I. Beck, Coloring of commutative rings, J. Algebra, 116, 208 – 226 (1988), https://doi.org/10.1016/0021-8693(88)90202-5 DOI: https://doi.org/10.1016/0021-8693(88)90202-5

T. Y. Berger-Wolf, W. E. Hart, J. Saia, Discrete sensor placement problems in distribution networks, Math. and Comput. Model., 42(13), 1385 – 1396 (2005), https://doi.org/10.1016/j.mcm.2005.03.005 DOI: https://doi.org/10.1016/j.mcm.2005.03.005

N. Bertrand, I. Charon, O. Hudry, A. Lobstein, Identifying and locating-dominating codes on chains and cycles, Eur. J. Combin., 25, 969 – 987 (2004), https://doi.org/10.1016/j.ejc.2003.12.013 DOI: https://doi.org/10.1016/j.ejc.2003.12.013

D. Bondy, The connectivity of commuting graphs, J. Combin. Theory, Ser. A, 113, 995 – 1007 (2006),https://doi.org/10.1016/j.jcta.2005.09.003 DOI: https://doi.org/10.1016/j.jcta.2005.09.003

J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, Locating dominating codes, Appl. Math. and Comput., 220, 38 – 45 (2013), https://doi.org/10.1016/j.amc.2013.05.060 DOI: https://doi.org/10.1016/j.amc.2013.05.060

P. J. Cameron, S. Ghosh, The power graph of a finite group, Discrete. Math., 311, 1220 – 1222 (2011), https://doi.org/10.1016/j.disc.2010.02.011 DOI: https://doi.org/10.1016/j.disc.2010.02.011

D. Carvalho, H. Marcelo, C. H. C. Little, Vector spaces and the Petersen graph, Electron. J. Combin., 15.1, (2008), no. 1, Research Paper 9, 13 pp., http://www.combinatorics.org/Volume_15/Abstracts/v15i1r9.html DOI: https://doi.org/10.37236/733

I. Chakrabarty, S. Ghosh, M. K. Sen, Undirected power graphs of semi group, Semigroup Forum, 78, 410 – 426 (2009), https://doi.org/10.1007/s00233-008-9132-y DOI: https://doi.org/10.1007/s00233-008-9132-y

I. Charon, O. Hudry, A. Lobstein, Identifying and locating-dominating codes: NP-completeness results for directed graphs, IEEE Trans. Inform. Theory, 48, 2192 – 2200 (2002), https://doi.org/10.1109/TIT.2002.800490 DOI: https://doi.org/10.1109/TIT.2002.800490

I. Charon, O. Hudry, A. Lobstein, Minimizing the size of an identifying or locating-dominating code in a graph is NP-hard, Theor. Comput. Sci., 290, 2109 – 2120 (2003), https://doi.org/10.1016/S0304-3975(02)00536-4 DOI: https://doi.org/10.1016/S0304-3975(02)00536-4

W. Chen, On vector spaces associated with a graph, SIAM J. Appl. Math., 20, 526 – 529 (1971), https://doi.org/10.1137/0120054 DOI: https://doi.org/10.1137/0120054

C. J. Colbourn, P. J. Slater, L. K. Stewart, Locating-dominating sets in series parallel networks, Congr. Numer., 56, 135 – 162 (1987), https://doi.org/10.1016/j.disc.2015.11.016 DOI: https://doi.org/10.1016/j.disc.2015.11.016

A. Das, Non-zero component graph of a finite dimensional vector space, Commun. Algebra, 44, 3918 – 3926 (2016), https://doi.org/10.1080/00927872.2015.1065866 DOI: https://doi.org/10.1080/00927872.2015.1065866

A. Das, On non-zero component graph of vector spaces over finite fields, J. Algebra and Appl., 16, №. 1 (2016), https://doi.org/10.1142/S0219498817500074 DOI: https://doi.org/10.1142/S0219498817500074

A. Finbow, B. L. Hartnell, On locating-dominating sets and well-covered graphs, Congr. Numer., 56, 135 – 162 (1987), https://doi.org/10.1016/S0012-365X(03)00297-8 DOI: https://doi.org/10.1016/S0012-365X(03)00297-8

R. Gould, Graphs and vector spaces, Stud. Appl. Math., 37, 193 – 214 (1958), https://doi.org/10.1002/sapm1958371193 DOI: https://doi.org/10.1002/sapm1958371193

C. Hernando, M. Mora, I. M Pelaya, C. Seara, D. R. Wood, Extremal graph theory for metric dimension and diameter, Electron. Notes Discrete Math., 29, 339 – 343 (2007), https://doi.org/10.1016/j.endm.2007.07.058 DOI: https://doi.org/10.1016/j.endm.2007.07.058

I. Honkala, T. Laihonen, S. Ranto, On locating-dominating codes in binary Hamming spaces, Disc. Math. Theor. Comput. Sci., 6, 265 – 282 (2004), https://www.emis.de/journals/DMTCS/pdfpapers/dm060207.pdf

A. Iranmanesh, A. Jafarzadeh, On the commuting graph associated with symmetric and alternating groups, J. Algebra and Appl., 7, 129 – 146 (2008), https://doi.org/10.1142/S0219498808002710 DOI: https://doi.org/10.1142/S0219498808002710

N. Jafari Rad, S. H. Jafari, Results on the intersection graphs of subspaces of a vector space, available at http://arxiv.org/abs/1105.0803v1.

M. G. Karpovsky, K. Chakrabarty, L. B. Levitin, On a new class of codes for identifying vertices in graphs, IEEE Trans. Inform. Theory, 44, 599 – 611 (1998), https://doi.org/10.1109/18.661507 DOI: https://doi.org/10.1109/18.661507

M. Laifenfeld, A. Trachtenberg, R. Cohen, D. Starobinski, Joint monitoring and routing in wireless sensor networks using robust identifying codes, Proc. IEEE Broadnets 2007, 9, 197 – 206 (2007). DOI: https://doi.org/10.1109/BROADNETS.2007.4550425

V. Manjula, Vector space of a graph, Int. J. Math. and Comput. Res., 2, 2320 – 7167 (2014).

A. R. Moghaddamfar, S. Rahbariyan, W. J. Shi, Certain properties of the power graph associated with finit group, J. Algebra and Appl., 13, 450040 (2014), https://doi.org/10.1142/S0219498814500406 DOI: https://doi.org/10.1142/S0219498814500406

R. Nikandish, H. R. Maimani, A. Khaksari, Coloring of a non-zero component graph associated with a finite dimensional vector space, J. Algebra and Appl., 16, No. 09, 1750173 (2017), https://doi.org/10.1142/S0219498817501730 DOI: https://doi.org/10.1142/S0219498817501730

D. F. Rall, P. J. Slater, On location-domination numbers for certian classes of graphs, Congr. Numer., 45, 97 – 106 (1984)

P. J. Slater, Dominating and reference sets in a graph, J. Math. Phys. Sci., 22, 445 – 455 (1988)

P. J. Slater, Fault-tolerant locating-dominating sets, Discrete. Math., 249, 179 – 189 (2002), https://doi.org/10.1016/S0012-365X(01)00244-8 DOI: https://doi.org/10.1016/S0012-365X(01)00244-8

P. J. Slater, Dominating and location in acyclic in graphs, Networks, 17, 55 – 64 (1987), https://doi.org/10.1002/net.3230170105 DOI: https://doi.org/10.1002/net.3230170105

Y. Talebi, M. S. Esmaeilifar, S. Azizpour, A kind of intersection graph of vector space, J. Discrete Math. Sci. and Cryptogr. 12, 6, №. 6, 681 – 689 (2009), https://doi.org/10.1080/09720529.2009.10698264 DOI: https://doi.org/10.1080/09720529.2009.10698264

Опубліковано
15.07.2020
Як цитувати
MurtazaM., JavaidI., і Fazil M. «Covering Codes of a Graph Associated to a Finite Vector Space». Український математичний журнал, вип. 72, вип. 7, Липень 2020, с. 952-9, doi:10.37863/umzh.v72i7.652.
Розділ
Статті