Stochastic Navier–Stokes variational inequalities with unilateral boundary conditions: probabilistic weak solvability
Анотація
УДК 519.21
Стохастичні варіаційні нерівності Нав'є–Стокса з односторонніми граничними умовами: ймовірнісна слабка розв’язність
У цій статті розпочато вивчення стохастичних варіаційних нерівностей Нав’є–Стокса з односторонніми граничними умовами та нелінійними впливами, що викликані вінеровськими процесами, для яких встановлюється існування ймовірнісного слабкого (або мартингального) розв'язку. Наш підхід включає проміжну штрафну задачу, слабкий розв'язок якої отримано за допомогою методу Гальоркіна в поєднанні з деякими аналітичними та ймовірнісними результатами щодо компактності. Шуканий імовірнісний слабкий розв’язок стохастичної варіаційної нерівності Нав’є–Стокса одержано в результаті граничного переходу в штрафній задачі. Отриманий основний результат є новим для стохастичних варіаційних нерівностей Нав’є–Стокса. Він є стохастичним аналогом роботи Брезіса щодо детермінованих варіаційних нерівностей Нав’є–Стокса та узагальнює кілька попередніх результатів, отриманих для стохастичних рівнянь Нав’є–Стокса, на випадок стохастичних варіаційних нерівностей Нав’є–Стокса з односторонніми граничними умовами.
Посилання
S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Boundary value problems in mechanics of nonhomogeneous fluids, Studies in Mathematics and its Applications, 22, North-Holland Publ. Co., Amsterdam (1990).
V. Barbu, S. S. Sritharan, Optimal stopping-time problem for stochastic Navier–Stokes equations and infinite-dimensional variational inequalities, Nonlinear Anal., 64, № 5, 1018–1024 (2006). DOI: https://doi.org/10.1016/j.na.2005.05.054
A. Bensoussan, Some existence results for stochastic partial differential equations, Stochastic Partial Differential Equations and Applications (Trento, 1990), 268, 37–53 (1992).
A. Bensoussan, Stochastic Navier–Stokes equations, Acta Appl. Math., 38, 267–304 (1995). DOI: https://doi.org/10.1007/BF00996149
A. Bensoussan, J. L. Lions, Applications of variational inequalities in stochastic control, North-Holland, Amsterdam (1982).
A. Bensoussan, A. Rascanu, Stochastic variational inequalities in infinite-dimensional spaces, Numer. Funct. Anal. and Optim., 18, № 1-2, 19–54 (1997). DOI: https://doi.org/10.1080/01630569708816745
A. Bensoussan, R. Temam, équations stochastiques du type Navier–Stokes, J. Funct. Anal., 13, 195–222 (1973). DOI: https://doi.org/10.1016/0022-1236(73)90045-1
H. Brezis, Équations et inéquations non linéaires dans les espaces vectoriels en dualité, Ann. Inst. Fourier (Grenoble), 18, № 1, 115–175 (1968). DOI: https://doi.org/10.5802/aif.280
H. Brézis, Problèmes unilatéraux, J. Math. Pures et Appl. (9), 51, 1–168 (1972).
H. Brézis, Inéquations variationnelles relatives à l'opérateur de Navier–Stokes, J. Math. Anal. and Appl., 39, 159–165 (1972). DOI: https://doi.org/10.1016/0022-247X(72)90231-4
A. Yu. Chebotarev, A. S. Savenkova, Variational inequalities in magneto-hydrodynamics, Math. Notes, 82, № 1-2, 119–130 (2007). DOI: https://doi.org/10.1134/S0001434607070152
A. Yu. Chebotarev, Subdifferential boundary value problems for stationary Navier–Stokes equations, Different. Equat., 28, № 8, 1189–1196 (1992).
G. Duvaut, J.-L. Lions, Inequalities in mechanics and physics, Grundlehren Math. Wiss., 219, Springer-Verlag, Berlin, New York (1976). DOI: https://doi.org/10.1007/978-3-642-66165-5
D. S. Konovalova, Subdifferential boundary value problems for Navier–Stokes evolution equations (in Russian), Differ. Uravn., 36, № 6, 792–798 (2000); English translation: Different. Equat., 36, № 6, 878–885 (2000).
J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthiers-Villars, Paris (1969).
J.-L. Lions, On some problems connected with Navier–Stokes equations, Nonlinear Evolution Equations (Proc. Symp., Univ. Wisconsin, Madison, Wis., 1977), Publ. Math. Res. Center Univ. Wisconsin, 40, Acad. Press, New York, London (1978), p. 59–84. DOI: https://doi.org/10.1016/B978-0-12-195250-1.50008-4
J.-L. Lions, G. Stampacchia, Variational inequalities, Commun. Pure and Appl. Math., 20, 493–519 (1967). DOI: https://doi.org/10.1002/cpa.3160200302
J. L. Menaldi, S. S. Sritharan, Optimal stopping time and impulse control problems for the stochastic Navier–Stokes equations, Stochastic Partial Differential Equations and Applications (Trento, 2002), Lecture Notes in Pure and Appl. Math., 227, Dekker, New York (2002), p. 389–404. DOI: https://doi.org/10.1201/9780203910177-21
R. Mikulevicius, B. L. Rozovskii, Global $L_{2}$-solutions of stochastic Navier–Stokes equations, Ann. Probab., 33, № 1, 137–176 (2005). DOI: https://doi.org/10.1214/009117904000000630
R. Mikulevicius, B. L. Rozovskii, Stochastic Navier–Stokes equations for turbulent flows, SIAM J. Math. Anal., 35, № 5, 1250–1310 (2004). DOI: https://doi.org/10.1137/S0036141002409167
Y. S. Mishura, Stochastic calculus for fractional Brownian motion and related processes, Lecture Notes in Mathematics, 1929, Springer-Verlag, Berlin (2008). DOI: https://doi.org/10.1007/978-3-540-75873-0
Yu. V. Prokhorov, Convergence of random processes and limit theorems in probability theory (in Russian), Teor. Veroyatn. i Primen., 1, 177–238 (1956). DOI: https://doi.org/10.1137/1101016
A. Răşcanu, Existence for a class of stochastic parabolic variational inequalities, Stochastics, 5, № 3, 201–239 (1981). DOI: https://doi.org/10.1080/17442508108833181
A. Răşcanu, On some stochastic parabolic variational inequalities, Nonlinear Anal., 6, № 1, 75–94 (1982). DOI: https://doi.org/10.1016/0362-546X(82)90101-8
M. Sango, Magnetohydrodynamic turbulent flows: existence results, Physica D, 239, 912–923 (2010). DOI: https://doi.org/10.1016/j.physd.2010.01.009
M. Sango, Density dependent stochastic Navier–Stokes equations with non-Lipschitz random forcing, Rev. Math. Phys., 22, № 6, 669–697 (2010). DOI: https://doi.org/10.1142/S0129055X10004041
A. V. Skorokhod, Limit theorems for stochastic processes, Teor. Veroyatn. i Primen., 1, 289–319 (1956). DOI: https://doi.org/10.1137/1101022
A. V. Skorokhod, Studies in the theory of random processes, Translated from the Russian by Scripta Technica, Inc. Addison-Wesley Publ. Co., Inc., Reading, Mass (1965).
R. Temam, Navier–Stokes equations, Theory and Numerical Analysis, Studies in Mathematics and its Applications, vol. 2, North-Holland Publ. Co., Amsterdam etc. (1977).
M. I. Vishik, A. I. Komech, A. V. Fursikov, Some mathematical problems of statistical hydromechanics (in Russian), Uspekhi Mat. Nauk, 34, № 5(209), 135–210 (1979). DOI: https://doi.org/10.1070/RM1979v034n05ABEH003906
Авторські права (c) 2023 M SANGO
Для цієї роботи діють умови ліцензії Creative Commons Attribution 4.0 International License.