Автономні нелінійні крайові задачі для рівняння Ляпунова у просторі Гільберта
Анотація
УДК 517.9
Дослiджуються крайовi задачi для рiвняння типу Ляпунова у просторi Гiльберта. Розглянуто випадок, коли вiдрiзок, на якому розглядається задача, залежить вiд параметра $\varepsilon$. Отримано необхiднi та достатнi умови iснування узагальнених розв’язкiв вiдповiдної задачi.
Посилання
D. Dragicevic, C. Preda, Lyapunov theorems for exponential dichotomies in Hilbert spaces, Int. J. Math., 27, № 4, Article 1650033 (2016), 13 p., https://doi.org/10.1142/S0129167X16500336 DOI: https://doi.org/10.1142/S0129167X16500336
Vu Ngoc Phat, Tran Tin Kiet, On the Lyapunov equation in Banach spaces and applications to control problems, Int. J. Math. and Math. Sci., 29, № 3, 155 – 166 (2000), https://doi.org/10.1155/S0161171202010840 DOI: https://doi.org/10.1155/S0161171202010840
C. Preda, P. Preda, Lyapunov operator inequalities for exponential stability of Banach space semigroups of operators, Appl. Math. Lett., 25, 401 – 403 (2012), https://doi.org/10.1016/j.aml.2011.09.022 DOI: https://doi.org/10.1016/j.aml.2011.09.022
M. Gil’, Solution estimates for the discrete Lyapunov equation in a Hilbert space and applications to difference equations, Axioms, 8, № 1 (2019), 22 p. DOI: https://doi.org/10.3390/axioms8010020
L. Jodar, An algorithm for solving generalized algebraic Lyapunov equations in Hilbert space, applications to boundary value problems, Proc. Edinburgh Math. Soc., 31, 99 – 105 (1988), https://doi.org/10.1017/S0013091500006611 DOI: https://doi.org/10.1017/S0013091500006611
Y. Latushkin, S. Montgomery-Smith, Lyapunov theorems for Banach spaces, Bull. Amer. Math. Soc., 31, № 1, 44 – 49 (1994), https://doi.org/10.1090/S0273-0979-1994-00495-1 DOI: https://doi.org/10.1090/S0273-0979-1994-00495-1
P. Gahinet, M. Sorine, A. J. Laub, C. Kenney, Stability margins and Lyapunov equations for linear operators in Hilbert space, Proc. 29th Conf. Decision and Control, 2638 – 2639 (1990). DOI: https://doi.org/10.1109/CDC.1990.203444
K. M. Przyluski, The Lyapunov equation and the problem of stability for linear bounded discrete-time systems in Hilbert space, Appl. Math. and Optim., 6, 97 – 112 (1980), https://doi.org/10.1007/BF01442886 DOI: https://doi.org/10.1007/BF01442886
R. P. Ivanov, I. L. Raykov, Parametric Lyapunov function method for solving nonlinear systems in Hilbert spaces, Numer. Funct. Anal. and Optim., 17, 893 – 901 (1996), https://doi.org/10.1080/01630569608816732 DOI: https://doi.org/10.1080/01630569608816732
A. Polyakov, On homogeneous Lyapunov function theorem for evolution equations, IFAC 2020 — Int. Federation Automatic Control, 21st World Congress, July 2020, Berlin / Virtual, Germany.
A. Pazy, On the applicability of Lyapunov’s theorem in Hilbert space, SIAM J. Math. Anal., 3, № 2, 291 – 294 (1972), https://doi.org/10.1137/0503028 DOI: https://doi.org/10.1137/0503028
M. Gil’, Stability of linear equations with differentiable operators in a Hilbert space, IMA J. Math. Control and Inform., 37, №. 1, 19 – 26 (2020), https://doi.org/10.1093/imamci/dny035 DOI: https://doi.org/10.1093/imamci/dny035
S. G. Krejn, Linejny`e uravneniya v banakhovom prostranstve, Nauka, Moskva (1971).
A. A. Bojchuk, A. A. Pokutnij, Teoriya vozmushhenij operatorny`kh uravnenij v prostranstvakh Freshe i Gil`berta, Ukr. mat. zhurn.,67, № 9, 1181 – 1188 (2015).
Ye. V. Panasenko, O. O. Pokutnij, Umova bifurkacziyi rozv'yazkiv rivnyannya Lyapunova u prostori Gil`berta, Nelinijni kolivannya, 20, № 3, 373 – 390 (2017).
Ye. V. Panasenko, O. O. Pokutnij, Nelinijni krajovi zadachi dlya rivnyannya Lyapunova u prostori $L_p$ , Nelinijni kolivannya, 21, № 4, 523 – 536 (2018).
V. A. Trenogin, Funkczional`ny`j analiz, Nauka, Moskva (1980).
E. Deutch, Semi-inverses, reflexive semi-inverses, and pseudoinverses of an arbitrary linear transformation, Linear Algebra and Appl., 4, 313 – 322 (1971), https://doi.org/10.1016/0024-3795(71)90002-4 DOI: https://doi.org/10.1016/0024-3795(71)90002-4
A. A. Bojchuk, V. F. Zhuravlev, A. M. Samojlenko, Obobshhenno-obratny`e operatory` i neterovy` kraevy`e zadachi, In-t matematiki NAN Ukrainy`, Kiev (1995).
A. A. Boichuk, A. M. Samoilenko, Generalized inverse operators and Fredholm boundary-value problems, De Gruyter, Berlin (2016), https://doi.org/10.1515/9783110378443 DOI: https://doi.org/10.1515/9783110378443
A. N. Tikhonov, V. Ya. Arsenin, Методы решения некорректных задач. (Russian) [[Methods for the solution of ill-posed problems]] Third edition. ``Nauka'', Moscow (1979).
Авторські права (c) 2021 О. О. Покутний, Є. В. Панасенко , Д. С. Бігун
Для цієї роботи діють умови ліцензії Creative Commons Attribution 4.0 International License.