An Ambarzumian type theorem on graphs with odd cycles

  • M. Kiss Inst. Math. Budapest Univ. Technology and Economics, Hungary
Keywords: Ambarzumian, inverse problems, inverse eigenvalue problem, differential equations on graphs, quantum graphs, Schrodinger operators, odd cycles

Abstract

UDC 517.9

We consider an inverse problem for Schrödinger operators on a connected equilateral graph $G$ with standard matching conditions.  The graph $G$ consists of at least two odd cycles glued together at a common vertex.  We prove an Ambarzumian-type result, i.e., if a specific part of the spectrum is the same as in the case of zero potential, then the potential must be equal to zero.

References

E. Akkermans, A. Comtet, J. Desbois, G. Montambaux, Ch. Texier, Spectral determinant on quantum graphs, Annal. Phys., 284, № 1, 10–51 (2000). DOI: https://doi.org/10.1006/aphy.2000.6056

V.~Ambarzumian, Über eine Frage der Eigenwerttheorie, Z. Phys., 53, 690–695 (1929). DOI: https://doi.org/10.1007/BF01330827

G.~Berkolaiko, P.~Kuchment, Introduction to quantum graphs, Math. Surveys and Monogr., Amer. Math. Soc. (2013). DOI: https://doi.org/10.1090/surv/186

B. Bollobás, Modern graph theory, Springer, New York (1998). DOI: https://doi.org/10.1007/978-1-4612-0619-4

J. Bolte, S. Egger, R. Rueckriemen, Heat-kernel and resolvent asymptotics for Schrödinger operators on metric graphs, Appl. Math. Res. Express, 2015, № 1, 129–165 (2014). DOI: https://doi.org/10.1093/amrx/abu009

J.~Boman, P.~Kurasov, R.~Suhr, Schrödinger operators on graphs and geometry II. Spectral estimates for $L_{1}$-potentials and an Ambartsumian theorem, Integral Equat. and Operator Theory, 90, № 3 (2018). DOI: https://doi.org/10.1007/s00020-018-2467-1

G.~Borg, Eine Umkehrung der Sturm–Liouvilleschen Eigenwertaufgabe, Acta Math., 78, 1–96 (1946). DOI: https://doi.org/10.1007/BF02421600

R. Carlson, V. Pivovarchik, Ambarzumian's theorem for trees, Electron. J. Different. Equat., 2007, № 142, 1–9 (2007).

R. Carlson, V. Pivovarchik, Spectral asymptotics for quantum graphs with equal edge lengths, J. Phys. A: Math. and Theor., 41, № 14, Article 145202 (2008). DOI: https://doi.org/10.1088/1751-8113/41/14/145202

Y. H.~Cheng, Tui-En Wang, Chun-Jen Wu, A note on eigenvalue asymptotics for Hill's equation, Appl. Math. Lett., 23, № 9, 1013–1015 (2010). DOI: https://doi.org/10.1016/j.aml.2010.04.028

S. Currie, B. A. Watson, Eigenvalue asymptotics for differential operators on graphs, J. Comput. and Appl. Math., 182, № 1, 13–31 (2005). DOI: https://doi.org/10.1016/j.cam.2004.11.038

E. B. Davies, An inverse spectral theorem, J. Operator Theory, 69, № 1, 195–208 (2013). DOI: https://doi.org/10.7900/jot.2010sep14.1881

Yves~Colin De~Verdière, Semi-classical measures on quantum graphs and the Gauss map of the determinant manifold, Ann. Henri Poincaré, 16, 347–364 (2015). DOI: https://doi.org/10.1007/s00023-014-0326-4

J. Desbois, Spectral determinant of Schrödinger operators on graphs, J. Phys. A: Math. and Gen., 33, № 7 (2000). DOI: https://doi.org/10.1088/0305-4470/33/7/103

L. Friedlander, Determinant of the Schrödinger operator on a metric graph, Contemp. Math., 415, 151–160 (2006). DOI: https://doi.org/10.1090/conm/415/07866

J.~M. Harrison, K.~Kirsten, C.~Texier, Spectral determinants and zeta functions of Schrödinger operators on metric graphs, J. Phys. A: Math. and Theor., 45, № 12, Article 125206 (2012). DOI: https://doi.org/10.1088/1751-8113/45/12/125206

M.~Horváth, Inverse spectral problems and closed exponential systems, Ann. Math., 162, № 2, 885–918 (2005). DOI: https://doi.org/10.4007/annals.2005.162.885

M.~Horváth, On the stability in Ambarzumian theorems, Inverse Problems, 31, № 2, Article 025008 (2015). DOI: https://doi.org/10.1088/0266-5611/31/2/025008

I.~Kac, V.~Pivovarchik, On multiplicity of a quantum graph spectrum, J. Phys. A: Math. and Theor., 44, № 10, Article~105301 (2011). DOI: https://doi.org/10.1088/1751-8113/44/10/105301

M. Kiss, Spectral determinants and an Ambarzumian type theorem on graphs, Integral Equat. and Operator Theory, 92, 1–11 (2020). DOI: https://doi.org/10.1007/s00020-020-02579-4

P. Kuchment, Quantum graphs: an introduction and a brief survey, Analysis on Graphs and its Applications, 291–314 (2008). DOI: https://doi.org/10.1090/pspum/077/2459876

Chun-Kong Law, Eiji Yanagida, {A solution to an Ambarzumyan problem on trees}, Kodai Math. J., 35, № 2, 358–373 (2012). DOI: https://doi.org/10.2996/kmj/1341401056

M. Möller, V. Pivovarchik, Spectral theory of operator pencils, Hermite–Biehler functions, and their applications, Oper. Theory: Adv. and Appl., Springer (2015). DOI: https://doi.org/10.1007/978-3-319-17070-1

K. Pankrashkin, Spectra of Schrödinger operators on equilateral quantum graphs, Lett. Math. Phys., 77, № 2, 139–154 (2006). DOI: https://doi.org/10.1007/s11005-006-0088-0

V. N.~Pivovarchik, Ambarzumian's theorem for a Sturm–Liouville boundary value problem on a star-shaped graph, Funct. Anal. and Appl., 39, № 2, 148–151 (2005). DOI: https://doi.org/10.1007/s10688-005-0029-1

Yu.~V. Pokornyi, A. V.~Borovskikh, Differential equations on networks (geometric graphs), J. Math. Sci., 119, № 6, 691–718 (2004). DOI: https://doi.org/10.1023/B:JOTH.0000012752.77290.fa

Ch. Texier, $zeta$-Regularized spectral determinants on metric graphs, J. Phys. A: Math. and Theor., 43, № 42, Article~425203 (2010). DOI: https://doi.org/10.1088/1751-8113/43/42/425203

Chuan-Fu Yang, Xiao-Chuan Xu, Ambarzumyan-type theorems on graphs with loops and double edges, J. Math. Anal. and Appl., 444, № 2, 1348–1358 (2016). DOI: https://doi.org/10.1016/j.jmaa.2016.07.030

Published
17.01.2023
How to Cite
Kiss, M. “An Ambarzumian Type Theorem on Graphs With Odd Cycles”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 12, Jan. 2023, pp. 1679 -85, doi:10.37863/umzh.v74i12.6734.
Section
Research articles