An interpolatory estimate for copositive polynomial approximations of continuous functions

  • G. A. Dzyubenko Institute of Mathematics of the National Academy of Sciences of Ukraine, Kiev

Abstract

UDC 517.9

Under the condition that a function $f$, which is continuous on $[-1,1],$ changes its sign at $s$ points $y_i,$ $-1 < y_{s} < y_{s-1} < \dots < y_1 < 1,$ then for each $n \in \mathbb{N}$ greater than some constant $\mathbb{N}$ depending only on $\min_{i=0, \dots ,s}\{y_i -y_{i+1}\},$ $y_{s+1} := -1,$ $y_0 := 1,$ we construct an algebraic polynomial $P_n$ of degree $\le n$ such that $P_n$ has the same sign as $f$ on $[-1,1],$ in particular, $P_n(y_i) = 0,$ $i = 1,\dots ,s,$ and
$$
|f(x)-P_n(x)|\le c(s)\,\omega_2(f,\sqrt{1-x^2}/n), \quad x\in[-1,1],
$$
where $c(s)$ is a constant depending only on $s,$ and $\omega_2(f,\cdot)$ is the second order modulus of smoothness of $f$.
Note that in this estimate, which is interpolatory at $\pm 1$ and established by DeVore for the unconstrained approximation, it is not possible, even for the unconstrained approximation, to replace $\omega_2$ with $\omega_k,$ $k>2.$

References

V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funkcij polinomami, Nauka, Moskva (1977).

S. A. Telyakovskij, Dve teoremy o priblizhenii funkcij algebraicheskimi mnogochlenami, Mat. sb., 70 (112), № 2, 252 – 265 (1966).

R. A. DeVore, Degree of approximation, Approximation theory, II (Proc. Intern. Sympos., Univ. Texas, Austin, Tex., 1976), eds G. G. Lorentz, C. K. Chui and L. Schumaker, Acad. Press. New York, 117 – 161 (1976).

X. M. Yu, Pointwise estimates for convex polynomial approximation, Approx. Theory and Appl., 1, № 4, 65 – 74 (1985).

H. H. Gonska, D. Leviatan, I. A. Shevchuk, H.-J. Wenz, Interpolatory pointwise estimates for polynomial approximation, Constr. Approx., 16, № 4, 603 – 629 (2000), https://doi.org/10.1007/s003650010008 DOI: https://doi.org/10.1007/s003650010008

K. A. Kopotun, Copositive approximation by algebraic polynomials, Anal. Math., 21, № 4, 269 – 283 (1995)б https://doi.org/10.1007/BF01909150 DOI: https://doi.org/10.1007/BF01909150

Y. Hu, X. M. Yu, The degree of copositive approximation and a computer algorithm, SIAM J. Numer. Anal., 33, № 1, 388 – 398 (1996), https://doi.org/10.1137/0733020 DOI: https://doi.org/10.1137/0733020

Y. Hu, D. Leviatan, X. M. Yu, Copositive polynomial approximation in $C[0, 1]$, J. Anal., 1, 85 – 90 (1993).

S. P. Zhou, A counterexample in copositive approximation, Israel J. Math., 78, № 1, 75 – 83 (1992), https://doi.org/10.1007/BF02801572 DOI: https://doi.org/10.1007/BF02801572

S. P. Zhou, On copositive approximation, Approxim. Theory and Appl., 9, № 2, 104 – 110 (1993).

G. A. Dzyubenko, Comonotone approximation with interpolation at the ends of an interval, Anal. Theory and Appl., 22, № 3, 233 – 245 (2006), https://doi.org/10.1007/s10496-006-0233-8 DOI: https://doi.org/10.1007/s10496-006-0233-8

G. A. Dzyubenko, J. Gilewicz, I. A. Shevchuk, Coconvex pointwise approximation, Ukrainian Math. J., 54, 1200 – 1212 (2002), https://doi.org/10.1023/A:1023411817844 DOI: https://doi.org/10.1023/A:1023411817844

H. Whitney, On Functions with bouded $n$-th differences, J. Math. Pures et Appl. 36, № 9, 67 – 95 (1957).

J. Gilewicz, Yu. V. Kryakin, I. A. Shevchuk, Boundedness by 3 of the Whitney interpolation constant, J. Approx. Theory, 119, 271 – 290 (2002), https://doi.org/10.1006/jath.2002.3732 DOI: https://doi.org/10.1006/jath.2002.3732

A. Marchaud, Sur les dérivées et sur les différences des fonctions de variables réelles. (French), J. Math. Pures et Appl. 6, 337 – 426 (1927).

I. A. Shevchuk, Priblizhenie monotonnyh funkcij monotonnymi mnogochlenami, Mat. sb.,183, № 5, 63 – 78 (1992).

I. A. Shevchuk, Priblizhenie mnogochlenami i sledy nepreryvnyh na otrezke funkcij, Nauk. dumka, Kiev (1992).

G. A. Dzyubenko, J. Gilewicz, I. A. Shevchuk, Piecewise monotone pointwise approximation, Constr. Approx., 14, № 3, 311 – 348 (1998), https://doi.org/10.1007/s003659900077 DOI: https://doi.org/10.1007/s003659900077

K. A. Kopotun, Pointwise and uniform estimates for convex approximation of functions by algebraic polynomials, Constr. Approx., 10, № 2, 153 – 178 (1994), https://doi.org/10.1007/BF01263061 DOI: https://doi.org/10.1007/BF01263061

D. Leviatan, I. A. Shevchuk, Coconvex approximation, J. Approx. Theory, 118, № 1, 20 – 65 (2002), https://doi.org/10.1006/jath.2002.3695 DOI: https://doi.org/10.1006/jath.2002.3695

Published
20.05.2022
How to Cite
Dzyubenko, G. A. “An Interpolatory Estimate for Copositive Polynomial Approximations of Continuous Functions”. Ukrains’kyi Matematychnyi Zhurnal, Vol. 74, no. 4, May 2022, pp. 496 -06, doi:10.37863/umzh.v74i4.7103.
Section
Research articles