Оцінки відхилення інтегральних операторів у напівлінійних метричних просторах і їх застосування
Анотація
УДК 517.5
Метою даної роботи є розвиток теорiї апроксимацiї у функцiональних напiвлiнiйних метричних просторах, що дозволяє включити до розгляду класи багато- i нечiткозначних функцiй, а також класи функцiй зi значеннями у банахових просторах, зокрема класи випадкових процесiв. Одержано оцiнки вiдхилення iнтегральних операторiв на класах функцiй зi значеннями в напiвлiнiйних метричних просторах i обговорено можливiсть застосування їх до ослiдження задач апроксимацiї узагальненими тригонометричними полiномами, оптимiзацiї формул наближеного iнтегрування, а також вiдновлення функцiй за неповною iнформацiєю.
Посилання
N. P. Kornejchuk, Tochnye konstanty v teorii priblizhenij, Nauka, Moskva (1987).
V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funkcij polinomami, Nauka, Moskva (1977).
V. Temlyakov, Multivariate approximation, Cambridge Univ. Press, Cambridge (2018), https://doi.org/10.1017/9781108689687 DOI: https://doi.org/10.1017/9781108689687
A. S. Romanyuk, Approksimativnye harakteristiki klassov periodicheskih funkcij mnogih peremennyh, Praci In-tu matematiki NAN Ukraїni, 93 (2012).
A. I. Stepanec, Ravnomernye priblizheniya trigonometricheskimi polinomami, Nauk. dumka, Kiev (1981).
A. I. Stepanec, Metody teorii priblizhenij, v 2 ch., ch. 1, In-t matematiki NAN Ukrainy, Kiev (2002).
N. P. Kornejchuk, V. F. Babenko, A. A. Ligun, Ekstremal'nye svojstva polinomov i splajnov, Nauk. dumka, Kiev (1992).
N. Dyn, E. Farkhi, A. Mokhov, Approximation of set-valued functions: adaptation of classical approximation operators, World Sci. Publ. Co. (2014), https://doi.org/10.1142/p905 DOI: https://doi.org/10.1142/p905
G. A. Anastassiou, Fuzzy mathematics: approximation theory, Studies in Fuzziness and Soft Computing, Springer (2010), https://doi.org/10.1007/978-3-642-11220-1 DOI: https://doi.org/10.1007/978-3-642-11220-1
Yu. G. Borisovich, B. D. Gel’man, A. D. Myshkis, V. V. Obukhovskii, Multivalued mappings, J. Sov. Math., 24, № 6, 719 – 791 (1984). DOI: https://doi.org/10.1007/BF01305758
S. M. Aseev, Kvazilinejnye operatory i ih primenenie v teorii mnogoznachnyh otobrazhenij, Tr. Mat. in-ta AN SSSR, 167, 25 – 52 (1985).
P. Diamond, P. Kloeden, Metric spaces of fuzzy sets: theory and applications, World Sci. Publ. Co. (1994), https://doi.org/10.1142/2326 DOI: https://doi.org/10.1142/2326
V. Babenko, V. Babenko, O. Kovalenko, Korneichuk – Stechkin lemma, Ostrowski and Landau inequalities, and optimal recovery problems for L-space valued functions; https://arxiv.org/abs/2006.14581.
V. Babenko, V. Babenko, O. Kovalenko, Optimal recovery of monotone operators in partially ordered $L$-spaces, Numer. Funct. Anal. and Optim., 41, № 11, 1373 – 1397 (2020),https://doi.org/10.1080/01630563.2020.1775251 DOI: https://doi.org/10.1080/01630563.2020.1775251
V. Babenko, V. Babenko, O. Kovalenko, M. Polishchuk, Optimal recovery of operators in function $L$-spaces, Anal. Math., 47, 13 – 32 (2021), https://doi.org/10.1007/s10476-021-0065-y DOI: https://doi.org/10.1007/s10476-021-0065-y
V. Babenko, Calculus and nonlinear integral equations for functions with values in $L$-spaces, Anal. Math., 45, 727 – 755 (2019), https://doi.org/10.1007/s10476-019-0004-3 DOI: https://doi.org/10.1007/s10476-019-0004-3
V. F. Babenko, V. V. Babenko, Best approximation, optimal recovery, and Landau inequalities for derivatives of Hukuhara-type in function $L$-spaces, J. Appl. and Numer. Optim., 1, 167 – 182 (2019). DOI: https://doi.org/10.23952/jano.1.2019.2.07
J. Warga, Optimal control of differential and functional equations, Acad. Press (1972). DOI: https://doi.org/10.1016/B978-0-12-735150-6.50011-7
C. A. Vahrameev, Integrirovanie v $L$-prostranstvah, Prikladnaya matematika i matematicheskoe obespechenie EVM, Izd-vo Mosk. gos. un-ta (1980).
E. Hille, R. S. Phillips, Functional analysis and semi groups, Amer. Math. Soc. Colloq. Publ. (1957).
S. M. Nikol'skij, Priblizhenie funkcij trigonometricheskimi polinomami v srednem, Izv. AN SSSR. Ser. mat., 10, № 3, 207 – 256 (1946).
V. K. Dzyadyk, O nailuchshem priblizhenii na klassah periodicheskih funkcij, opredelyaemyh integralami ot linejnoj kombinacii absolyutno monotonnyh yader, Mat. zametki, 16, № 5, 691 – 701 (1974).
V. F. Babenko, Priblizhenie klassov svertok, Sib. mat. zhurn., 28, № 5, 6 – 21 (1987).
V. F. Babenko, A. A. Ligun, Razvitie issledovanij po tochnomu resheniyu ekstremal'nyh zadach teorii nailuchshego priblizheniya, Ukr. mat. zhurn., 42, № 1, 4 – 17 (1990). DOI: https://doi.org/10.1007/BF01066360
V. F. Babenko, S. A. Pichugov, O nailuchshem linejnom priblizhenii nekotoryh klassov differenciruemyh periodicheskih funkcij, Mat. zametki, 27, № 5, 683 – 689 (1980).
V. F. Babenko, V. V. Babenko, M. V. Polishchuk, Priblizhenie nekotoryh klassov mnogoznachnyh periodicheskih funkcij obobshchennymi trigonometricheskimi polinomami, Ukr. mat. zhurn., 68, № 4, 449 – 459 (2016). DOI: https://doi.org/10.1007/s11253-016-1237-y
S. M. Nikol'skij, Kvadraturnye formuly, Nauka, Moskva (1988).
A. A. ZHensykbaev, Problemy vosstanovleniya operatorov, Institut komp'yut. issled., Izhevsk (2003).
D. Traub, H. Vozhnyakovskij, Obshchaya teoriya optimal'nyh algoritmov, Mir, Moskva (1983).
Авторські права (c) 2022 Наталія Вікторівна Парфінович
Для цієї роботи діють умови ліцензії Creative Commons Attribution 4.0 International License.