New quantum Hermite–Hadamard-type inequalities for $p$-convex functions involving recently defined quantum integrals

  • Ghazala Gulshan Department of Mathematics, Faculty of Science, Mirpur University of Science and Technology (MUST), Pakistan
  • Hüseyin Budak Department of Mathematics, Faculty of Science and Arts, Düzce University, Turkey
  • Rashida Hussain Department of Mathematics, Faculty of Science, Mirpur University of Science and Technology (MUST), Pakistan
  • Muhammad Aamir Ali Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, China

Анотація

УДК 517.5

Нові квантові нерівності Ерміта–Адамара для $p$-опуклих функцій, що включають нещодавно визначені квантові інтеграли

Основною метою цього дослідження є розробка нових інтегральних нерівностей типу Ерміта–Адамара для $p$-опуклих функцій в контексті $q$-числення за допомогою концепції $T_{q}$- інтегралів, що були нещодавно визначені. Далі отриману нерівність Ерміта–Адамара для $p$-опуклих функцій використано для виведення нової нерівності Ерміта–Адамара для координованих $p$-опуклих функцій. Крім того, наведено кілька прикладів, щоб продемонструвати достовірність отриманих основних результатів. Ми сподіваємося, що ідеї та методи, запропоновані в цій роботі, можуть стимулювати подальші дослідження в цій галузі.

Посилання

M. Alomari, M. Darus, S. S. Dragomir, New inequalities of Hermite–Hadamard type for functions whose second derivatives absolute values are quasi-convex, Tamkang J. Math., 41, Article 353 (2010). DOI: https://doi.org/10.5556/j.tkjm.41.2010.498

S. S. Dragomir, C.E.M. Pearce, Selected topics on Hermite–Hadamard inequalities and applications, RGMIA Monographs, Victoria Univ. (2000).

S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math Lett., 11, 91–95 (1998). DOI: https://doi.org/10.1016/S0893-9659(98)00086-X

S. S. Dragomir, On some new inequalities of Hermite–Hadamard type for $m$-convex functions, Tamkang J. Math., 33, 55–65 (2002). DOI: https://doi.org/10.5556/j.tkjm.33.2002.304

G. Rahman, K. S. Nisar, S. Rashid, T. Abdeljawad, Certain Gruss type inequalities via tempered fractional integrals concerning another function, J. Inequal. and Appl., 2020, Article 147 (2020). DOI: https://doi.org/10.1186/s13660-020-02420-x

S. Rashid, A. Khalid, G. Rahman, K. S. Nisar, Y.-M. Chu, On new modifications governed by quantum Hahnas integral operator pertaining to fractional calculus, J. Funct. Spaces, 2020, Article 8262860 (2020). DOI: https://doi.org/10.1155/2020/8262860

L. Xu, Y.-M. Chu, S. Rashid, A. A. El-Deeb, K. S. Nisar, On new unified bounds for a family of functions via fractional q-calculus theory, J. Funct. Spaces, 2020, Article 4984612 (2020). DOI: https://doi.org/10.1155/2020/4984612

S. Rashid, Z. Hammouch, R. Ashraf, D. Baleanu, K. S. Nisar, New quantum estimates in the setting of fractional calculus theory, Adv. Difference Equat., 2020, Article 383 (2020). DOI: https://doi.org/10.1186/s13662-020-02843-2

S. Rashid, M. A. Noor, K. S. Nisar, D. Baleanu, G. Rahman, A new dynamic scheme via fractional operators on time scale, Front Phys., 8, (2020). DOI: https://doi.org/10.3389/fphy.2020.00165

S. Rashid, F. Jarad, M. A. Noor, H. Kalsoom, Y.-M. Chu, Inequalities by means of generalized proportional fractional integral operators with respect to another function, Mathematics, 7, Article 1225 (2019). DOI: https://doi.org/10.3390/math7121225

Z. Khan, S. Rashid, R. Ashraf, D. Baleanu, Y.-M. Chu, Generalized trapezium-type inequalities in the settings of fractal sets for functions having generalized convexity property, Adv. Difference Equat., 2020, Article 657 (2020). DOI: https://doi.org/10.1186/s13662-020-03121-x

S.-B. Chen, S. Rashid, Z. Hammouch, M. A. Noor, R. Ashraf, Y.-M. Chu, Integral inequalities via Rainaas fractional integrals operator with respect to a monotone function, Adv. Difference Equat., 2020, Article 647 (2020). DOI: https://doi.org/10.1186/s13662-020-03108-8

S. Rashid, R. Ashraf, K. S. Nisar, T. Abdeljawad, Estimation of integral inequalities using the generalized fractional derivative operator in the Hilfer sense, J. Math., 2020, Article 1626091 (2020). DOI: https://doi.org/10.1155/2020/1626091

A. W. Roberts, D. E. Varberg, Convex functions, Acad. Press, New York (1973).

N. Alp, M. Z. Sarikaya, M. Kunt, İ. İşcan, $q$-Hermite–Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud Univ. Sci., 30, 193–203 (2018). DOI: https://doi.org/10.1016/j.jksus.2016.09.007

K. S. Zhang, J. P. Wan, $p$-Convex functions and their properties, Pure and Appl. Math., 23, 130–133 (2007).

İ. İşcan, Hermite–Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. and Stat., 43, 935–942 (2014). DOI: https://doi.org/10.1155/2014/346305

Z. B. Fang, R. Shi, On the ($p,h$)-convex function and some integral inequalities, J. Inequal. and Appl., 45, Article 45 (2014). DOI: https://doi.org/10.1186/1029-242X-2014-45

W. G. Yang, Hermite–Hadamard type inequalities for $(p_{1},h_{1})$-$(p_{2},h_{2})$-convex functions on the coordinates, Tamkang J. Math., 47, 289–322 (2016). DOI: https://doi.org/10.5556/j.tkjm.47.2016.1958

M. A. Ali, H. Budak, M. Abbas, Y.-M. Chu, Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second $q^{b}$-derivatives, Adv. Difference Equat., 2020, Article 7 (2021). DOI: https://doi.org/10.1186/s13662-020-03163-1

M. A. Ali, N. Alp, H. Budak, Y. M. Chu, Z. Zhang, On some new quantum midpoint type inequalities for twice quantum differentiable convex functions, Open Math., 19, 427–439 (2021). DOI: https://doi.org/10.1515/math-2021-0015

N. Alp, M. Z. Sarikaya, Hermite–Hadamard's type

inequalities for coordinated convex functions on quantum integral, Appl. Math. E-Notes, 20, 341–356 (2020).

H. Budak, Some trapezoid and midpoint type inequalities for newly defined quantum integrals, Proyecciones, 40, 199–215 (2021). DOI: https://doi.org/10.22199/issn.0717-6279-2021-01-0013

H. Budak, M. A. Ali, M. Tarhanaci, Some new quantum Hermite–Hadamard-like inequalities for coordinated convex functions, J. Optim. Theory and Appl., 186, 899–910 (2020). DOI: https://doi.org/10.1007/s10957-020-01726-6

J. Tariboon, S. K. Ntouyas, P. Agarwal, New concepts of fractional quantum calculus and applications to impulsive fractional $q$-difference equations, Adv. Difference Equat., 1, 1–19 (2015). DOI: https://doi.org/10.1186/s13662-014-0348-8

M. Vivas-Cortez, M. A. Ali, H. Budak, H. Kalsoom, P. Agarwal, Some new Hermite–Hadamard and related inequalities for convex functions via $(p,q)$-integral, Entropy, 23, № 7, Article 828 (2021). DOI: https://doi.org/10.3390/e23070828

N. Alp, M. Z. Sariakaya, A new definition and properties of quantum integral which calls $q$-integral, Konuralp J. Math., 5, 146–159 (2017).

H. Kara, H. Budak, N. Alp, H. Kalsoom, M. Z. Sarikaya, On new generalized quantum integrals and related Hermite–Hadamard inequalities, J. Inequal. and Appl., 2021, Article 180 (2021). DOI: https://doi.org/10.1186/s13660-021-02715-7

H. Kara, H. Budak, On Hermite–Hadamard type inequalities for newly defined generalized quantum integrals, Ric. Mat. (2021); https://doi.org/10.1007/s11587-021-00662-5. DOI: https://doi.org/10.1007/s11587-021-00662-5

F. H. Jackson, On a $q$-definite integrals, Quart. J. Pure and Appl. Math., 41, 193–203 (1910).

J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Difference Equat., 282, 1–19 (2013). DOI: https://doi.org/10.1186/1687-1847-2013-282

S. Bermudo, P. Korus, J. N. Valdes, On $q$-Hermite–Hadamard inequalities for general convex functions, Acta Math. Hungar., 162, 364–374 (2020). DOI: https://doi.org/10.1007/s10474-020-01025-6

M. A. Latif, S. S. Dragomir, E. Momoniat, Some $q$-analogues of Hermite–Hadamard inequality of functions of two variables on finite rectangles in the plane, J. King Saud Univ. Sci., 29, 263–273 (2017). DOI: https://doi.org/10.1016/j.jksus.2016.07.001

Опубліковано
26.09.2023
Як цитувати
GulshanG., BudakH., HussainR., і AliM. A. «New Quantum Hermite–Hadamard-Type Inequalities for $p$-Convex Functions Involving Recently Defined Quantum Integrals». Український математичний журнал, вип. 75, вип. 9, Вересень 2023, с. 1204 -19, doi:10.3842/umzh.v75i9.7200.
Розділ
Статті