Combined methods for solving degenerate unconstrained optimization problems
Анотація
УДК 519.853.6 : 519.613.2
Комбіновані методи розв'язування вироджених задач безумовної оптимізації
Наведено конструктивні методи другого та четвертого порядку для розв'язування вироджених безумовних задач оптимізації. Метод четвертого порядку, який ми використовуємо, є комбінацією методу Ньютона та методу, що використовує похідні четвертого порядку. Наш підхід базується на зображенні $\mathbb{R}^n$ як прямої суми ядра матриці Гесса та її ортогонального доповнення. До ядра матриці Гесса застосовано метод четвертого порядку, а до ортогонального доповнення --- метод Ньютона. Цей метод є ефективним у випадку одновимірного ядра матриці Гесса. Для отримання методу другого порядку метод Ньютона поєднано з методом найкрутішого спуску. Досліджено продуктивність цих методів та проаналізовано швидкість їх збіжності. Також запропоновано новий адаптивний комбінований квазіньютонівський метод (ACQNM), що використовує методи другого та четвертого порядку для виродженого випадку. Ефективність ACQNM показано на прикладі деяких найбільш поширених тестових функцій.
Посилання
N. Andrei, A collection of 75 unconstrained optimization test functions, Research Institute for Informatics, Technical Report, 6, 1–9 (2018).
N. Andrei, Modern numerical nonlinear optimization}, Springer, Cham (2022).
K. N. Belash, A. A. Tret'yakov, Methods for solving degenerate problems, Comput. Math. and Math. Phys., 28, № 4, 90–94 (1988).
K. Ghazali, J. Sulaiman, Y. Dasril, D. Gabda, Newton-SOR iteration for solving large-scale unconstrained optimization problems with an arrowhead Hessian matrices, J. Phys.: Conf. Ser., 1358, № 1, 1–10 (2019).
G. Wang, Y. Wei, S. Qiao, Generalized inverses: theory and computations, Springer Nature, Singapore (2018).
I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT Press (2016).
B. A. Hassan, M. A. Al Kahya, A new class of quasi-Newton updating formulas for unconstrained optimization, J. Interdiscip. Math., 24, № 8, 2355–2366 (2021).
X. Han, J. Zhang, J. Chen, New hybrid conjugate gradient algorithm for unconstrained optimization, Bull. Iran. Math. Soc., 43, № 6, 2067–2084 (2017).
J.-P. Penot, Higher-order optimality conditions and higher-order tangents sets, SIAM J. Optim., 27, № 4, 2508–2527 (2017).
B. Jimenez, V. Novo, Higher-order optimality conditions for strict local minima, Ann. Oper. Res., 157, 183–192 (2008).
L. Li, M. Qin, H. Wang, A regularized Newton method with correction for unconstrained convex optimization, Open J. Optim., 68, № 1, 44–52 (2016).
N. Andrei, Diagonal approximation of the Hessian by finite differences for unconstrained optimization, J. Optim. Theory and Appl., 185, № 3, 859–879 (2020).
X. Li, B. Wang, W. Hu, A modified nonmonotone BFGS algorithm for unconstrained optimization, J. Inequal. and Appl., 183, 1–18 (2017).
N. G. Maratos, M. A. Moraitis, Some results on the Sign recurrent neural network for unconstrained minimization, Neurocomputing, 287, 1–25 (2018).
D. Mehta, T. Chen, T. Tang, J. D. Hauenstein, The loss surface of deep linear networks viewed through the algebraic geometry lens; arXiv preprint arXiv:1810.07716 (2018).
T. D. Niri, M. M. Hosseini, M. Heydari, An efficient improvement of the Newton method for solving nonconvex optimization problems, Comput. Methods Different. Equat., 7, № 1, 69-85 (2019).
W. Quapp, Searching minima of an N-dimensional surface: a robust valley following method, Comput. and Math. Appl., 41, 407–414 (2001).
G. Ma, H. Lin, W. Jin, D. Han, Two modified conjugate gradient methods for unconstrained optimization with applications in image restoration problems, J. Appl. Math. and Comput., 68, № 6, 4733–4758 (2022).
A. R. Sankar, V. N. Balasubramanian, Are saddles good enough for deep learning?; arXiv preprint arXiv:1706.02052 (2017).
C. Shen, X. Chen, Y. Liang, A regularized Newton method for degenerate unconstrained optimization problems, Optim. Lett., 6, 1913–1933 (2012).
J. Lu, Matrix decomposition and applications, Amazon Digital Services LLC (2022).
E. Szczepanik, A. Prusinska, A. Tret'yakov, The p-factor method for nonlinear optimization, Schedae Inform., 21, 141–157 (2012).
D. di Serafino, G. Toraldo, M. Viola, Using gradient directions to get global convergence of Newton-type methods, Research Institute for Informatics, Technical Report, 6, 1–9 (2018).
N. Andrei, Modern numerical nonlinear optimization, Springer, Cham (2022).
K. N. Belash, A. A. Tret'yakov, Methods for solving degenerate problems, Comput. Math. and Math. Phys., 28, № 4, 90–94 (1988).
K. Ghazali, J. Sulaiman, Y. Dasril, D. Gabda, Newton-SOR iteration for solving large-scale unconstrained optimization problems with an arrowhead Hessian matrices, J. Phys.: Conf. Ser., 1358, № 1, 1–10 (2019).
G. Wang, Y. Wei, S. Qiao, Generalized inverses: theory and computations, Springer Nature, Singapore (2018).
I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT Press (2016).
B. A. Hassan, M. A. Al Kahya, A new class of quasi-Newton updating formulas for unconstrained optimization, J. Interdiscip. Math., 24, № 8, 2355–2366 (2021).
X. Han, J. Zhang, J. Chen, New hybrid conjugate gradient algorithm for unconstrained optimization, Bull. Iran. Math. Soc., 43, № 6, 2067–2084 (2017).
J.-P. Penot, Higher-order optimality conditions and higher-order tangents sets, SIAM J. Optim., 27, № 4, 2508–2527 (2017).
B. Jimenez, V. Novo, Higher-order optimality conditions for strict local minima, Ann. Oper. Res., 157, 183–192 (2008).
L. Li, M. Qin, H. Wang, A regularized Newton method with correction for unconstrained convex optimization, Open J. Optim., 68, № 1, 44–52 (2016).
N. Andrei, Diagonal approximation of the Hessian by finite differences for unconstrained optimization, J. Optim. Theory and Appl., 185, № 3, 859–879 (2020).
X. Li, B. Wang, W. Hu, A modified nonmonotone BFGS algorithm for unconstrained optimization, J. Inequal. and Appl., 183, 1–18 (2017).
N. G. Maratos, M. A. Moraitis, Some results on the Sign recurrent neural network for unconstrained minimization, Neurocomputing, 287, 1–25 (2018).
D. Mehta, T. Chen, T. Tang, J. D. Hauenstein, The loss surface of deep linear networks viewed through the algebraic geometry lens; arXiv preprint arXiv:1810.07716 (2018).
T. D. Niri, M. M. Hosseini, M. Heydari, An efficient improvement of the Newton method for solving nonconvex optimization problems, Comput. Methods Different. Equat., 7, № 1, 69-85 (2019).
W. Quapp, Searching minima of an N-dimensional surface: a robust valley following method, Comput. and Math. Appl., 41, 407–414 (2001).
G. Ma, H. Lin, W. Jin, D. Han, Two modified conjugate gradient methods for unconstrained optimization with applications in image restoration problems, J. Appl. Math. and Comput., 68, № 6, 4733–4758 (2022).
A. R. Sankar, V. N. Balasubramanian, Are saddles good enough for deep learning?; arXiv preprint arXiv:1706.02052 (2017).
C. Shen, X. Chen, Y. Liang, A regularized Newton method for degenerate unconstrained optimization problems, Optim. Lett., 6, 1913–1933 (2012).
J. Lu, Matrix decomposition and applications, Amazon Digital Services LLC (2022).
E. Szczepanik, A. Prusinska, A. Tret'yakov, The p-factor method for nonlinear optimization, Schedae Inform., 21, 141–157 (2012).
D. di Serafino, G. Toraldo, M. Viola, Using gradient directions to get global convergence of Newton-type methods, Appl. Math. and Comput., 409, Article № 125612 (2021).
V. M. Zadachyn, Higher-order optimality conditions for degenerate unconstrained optimization problems, J. Optim., Different. Equat. and Appl., 30, № 1, 88–97(2022); DOI: 10.15421/142204.
V. M. Zadachyn, Modified Newton and quasi-Newtonian-type methods with pseudo-inversions for solving degenerate problems, Ph. D. Thesis, Lomonosov Moscow State University, Moscow, CA (1988) (in Russian); https://search.rsl.ru/ru/record/01000049990.
V. I. Meleshko, V. M. Zadachin, Factorizations and pseudo-inversions of singular perturbed matrices with nonfixed signs, Izv. Vyss. Uchebn. Zaved. Mat., 11, 42–50 (1987).
E. G. Birgin, J. M. Martinez, The use of quadratic regularization with a cubic descent condition for unconstrained optimization, SIAM J. Optim., 27, № 2, 1049–1074 (2017).
E. G. Birgin, J. M. Martinez, Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization, Comput. Optim. and Appl., 73, 707–753 (2019).
S. Javed, A. Khan, Efficient regularized Newton-type algorithm for solving convex optimization problem, J. Appl. Math. and Comput., 68, № 4, 2343–2363 (2022).
H. Zhang, Q. Ni, A new regularized quasi-Newton method for unconstrained optimization, Optim. Lett., 12, № 7, 1639–1658 (2018).Appl. Math. and Comput., 409, Article № 125612 (2021).
V. M. Zadachyn, Higher-order optimality conditions for degenerate unconstrained optimization problems, J. Optim., Different. Equat. and Appl., 30, № 1, 88–97(2022); DOI: 10.15421/142204. DOI: https://doi.org/10.15421/142204
V. M. Zadachyn, Modified Newton and quasi-Newtonian-type methods with pseudo-inversions for solving degenerate problems, Ph. D. Thesis, Lomonosov Moscow State University, Moscow, CA (1988) (in Russian); https://search.rsl.ru/ru/record/01000049990.
V. I. Meleshko, V. M. Zadachin, Factorizations and pseudo-inversions of singular perturbed matrices with nonfixed signs, Izv. Vyss. Uchebn. Zaved. Mat., 11, 42–50 (1987).
E. G. Birgin, J. M. Martinez, The use of quadratic regularization with a cubic descent condition for unconstrained optimization, SIAM J. Optim., 27, № 2, 1049–1074 (2017).
E. G. Birgin, J. M. Martinez, Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization, Comput. Optim. and Appl., 73, 707–753 (2019).
S. Javed, A. Khan, Efficient regularized Newton-type algorithm for solving convex optimization problem, J. Appl. Math. and Comput., 68, № 4, 2343–2363 (2022).
H. Zhang, Q. Ni, A new regularized quasi-Newton method for unconstrained optimization, Optim. Lett., 12, № 7, 1639–1658 (2018).
Авторські права (c) 2024 Задачин Віктор, Максим Бебія
Для цієї роботи діють умови ліцензії Creative Commons Attribution 4.0 International License.