Geometry of multilinear forms on a normed space $\mathbb{R}^m$

  • Sung Guen Kim Department of Mathematics, Kyungpook National University, Daegu, South Korea

Анотація

УДК 514.1

Геометрія багатолінійних форм на нормованому просторі $\mathbb{R}^m$

Нехай $\mathbb{R}^m_{\|\cdot\|}$ для кожного $m\geq 2$ — це $\mathbb{R}^m$ з нормою $\|\cdot\|$ такою, що її одинична куля має скінченну кількість екстремальних точок.  Для кожного $n\geq2$ ми приділимо увагу опису множин екстремальних та відкритих точок замкнених одиничних куль в ${\mathcal L}(^n\mathbb{R}^m_{\|\cdot\|})$ і ${\mathcal L}_s(^n\mathbb{R}^m_{\|\cdot\|})$, де ${\mathcal L}(^n\mathbb{R}^m_{\|\cdot\|})$ — простір $n$-лінійних форм на $\mathbb{R}^m_{\|\cdot\|},$ а ${\mathcal L}_s(^n\mathbb{R}^m_{\|\cdot\|})$ — підпростір ${\mathcal L}(^n\mathbb{R}^m_{\|\cdot\|})$, що складається з симетричних $n$-лінійних форм. Нехай ${\mathcal F}={\mathcal L}(^n\mathbb{R}^m_{\|\cdot\|})$ або ${\mathcal L}_s(^n\mathbb{R}^ m_{\|\cdot\|}).$ Спочатку ми показуємо, що кількість екстремальних точок одиничної кулі $\mathbb{R}^m_{\|\cdot\|}$ більша ніж $2m.$ Використовуючи цей факт, ми класифікуємо екстремальні  та відкриті точки замкненої одиничної кулі в ${\mathcal F}$ відповідно. Показано, що кожна екстремальна точка замкненої одиничної кулі  ${\mathcal F}$ є відкритою. Отримано результати роботи [Studia Sci. Math. Hungar., 57, No. 3, 267–283 (2020)] та розширено результати з [Acta Sci. Math. Szedged, 87, No. 1-2, 233–245 (2021) and J. Korean Math., Soc., 60, No. 1-2, 213–225 (2023)].

Посилання

R. M. Aron, M. Klimek, Supremum norms for quadratic polynomials, Arch. Math. (Basel), 76, 73–80 (2001). DOI: https://doi.org/10.1007/s000130050544

W. V. Cavalcante, D. M. Pellegrino, E. V. Teixeira, Geometry of multilinear forms, Commun. Contemp. Math., 22, № 2, Article 1950011 (2020). DOI: https://doi.org/10.1142/S0219199719500111

Y. S. Choi, H. Ki, S. G. Kim, Extreme polynomials and multilinear forms on $l_1$, J. Math. Anal. and Appl., 228, 467–482 (1998). DOI: https://doi.org/10.1006/jmaa.1998.6161

Y. S. Choi, S. G. Kim, The unit ball of $P(^2l_2^2)$, Arch. Math./ (Basel), 71, 472–480 (1998). DOI: https://doi.org/10.1007/s000130050292

S. Dineen, Complex analysis on infinite dimensional spaces, Springer-Verlag, London (1999). DOI: https://doi.org/10.1007/978-1-4471-0869-6

B. C. Grecu, Geometry of 2-homogeneous polynomials on $l_p$ spaces, $1< p < ∞$, J. Math. Anal. and Appl., 273, 262–282 (2002). DOI: https://doi.org/10.1016/S0022-247X(02)00217-2

S. G. Kim, Exposed 2-homogeneous polynomials on $P(^2l_p^2)~(1≤ p≤ ∞)$, Math. Proc. R. Ir. Acad., 107, 123–129 (2007). DOI: https://doi.org/10.1353/mpr.2007.0002

S. G. Kim, The unit ball of $L_s(^2l_{∞}^2$), Extracta Math., 24, 17–29 (2009).

S. G. Kim, The unit ball of $P(^2d_{*}(1, w)^2)$, Math. Proc. R. Ir. Acad. , 111, № 2, 79–94 (2011).

S. G. Kim, Exposed symmetric bilinear forms of $L_s(^2d_*(1, w)^2$), Kyungpook Math. J., 54, 341–347 (2014). DOI: https://doi.org/10.5666/KMJ.2014.54.3.341

S. G. Kim, Exposed 2-homogeneous polynomials on the two-dimensional real predual of Lorentz sequence space, Mediterr. J. Math., 13, 2827–2839 (2016). DOI: https://doi.org/10.1007/s00009-015-0658-4

S. G. Kim, Extreme $2$-homogeneous polynomials on the plane with a hexagonal norm and applications to the polarization and unconditional constants, Studia Sci. Math. Hungar., 54, 362–393 (2017). DOI: https://doi.org/10.1556/012.2017.54.3.1371

S. G. Kim, Extreme bilinear forms on $mathbb{R}^n$ with the supremum norm, Period. Math. Hungar., 77, 274–290 (2018). DOI: https://doi.org/10.1007/s10998-018-0246-z

S. G. Kim, Exposed polynomials of $P(^2R^2_{h(1/2)})$, Extracta Math., 33, № 2, 127–143 (2018). DOI: https://doi.org/10.17398/2605-5686.33.2.127

S. G. Kim, Extreme points of the space $L(^2l_{∞})$, Commun. Korean Math. Soc., 35, № 3, 799–807 (2020).

S. G. Kim, The unit balls of $L(^nl_{∞}^m)$ and $L_s(^nl_{∞}^m)$, Studia Sci. Math. Hungar., 57, № 3, 267–283 (2020). DOI: https://doi.org/10.1556/012.2020.57.3.1470

S. G. Kim, Extreme and exposed points of $L(^nl_{∞}^2)$ and $L_s(^nl_{∞}^2)$, Extracta Math., 35, № 2, 127–135 (2020). DOI: https://doi.org/10.17398/2605-5686.35.2.127

S. G. Kim, Smooth points of $L(^nl_{∞}^m)$ and $L_s(^nl_{∞}^m)$, Comment. Math., 60, № 1-2, 13–21 (2020).

S. G. Kim, Geometry of multilinear forms on $R^m$ with a certain norm, Acta Sci. Math. $($Szedged$)$, 87, № 1-2, 233–245 (2021). DOI: https://doi.org/10.14232/actasm-020-824-2

S. G. Kim, Geometry of bilinear forms on a normed space $R^n$, J. Korean Math. Soc., 60, № 1-2, 213–225 (2023).

S. G. Kim, S. H. Lee, Exposed 2-homogeneous polynomials on Hilbert spaces, Proc. Amer. Math. Soc., 131, 449–453 (2003). DOI: https://doi.org/10.1090/S0002-9939-02-06544-9

A. G. Konheim, T. J. Rivlin, Extreme points of the unit ball in a space of real polynomials, Amer. Math. Monthly, 73, 505–507 (1966). DOI: https://doi.org/10.2307/2315472

M. G. Krein, D. P. Milman, On extreme points of regular convex sets, Studia Math., 9, 133–137 (1940). DOI: https://doi.org/10.4064/sm-9-1-133-138

L. Milev, N. Naidenov, Semidefinite extreme points of the unit ball in a polynomial space, J. Math. Anal. and Appl., 405, 631–641 (2013). DOI: https://doi.org/10.1016/j.jmaa.2013.04.026

G. A. Muñoz-Fernández, J. B. Seoane-Sepúlveda, Geometry of Banach spaces of trinomials, J. Math. Anal. and Appl., 340, 1069–1087 (2008). DOI: https://doi.org/10.1016/j.jmaa.2007.09.010

S. Neuwirth, The maximum modulus of a trigonometric trinomial, J. Anal. Math., 104, 371–396 (2008). DOI: https://doi.org/10.1007/s11854-008-0028-2

R. A. Ryan, B. Turett, Geometry of spaces of polynomials, J. Math. Anal. and Appl., 221, 698–711 (1998). DOI: https://doi.org/10.1006/jmaa.1998.5942

Опубліковано
03.07.2024
Як цитувати
KimS. G. «Geometry of Multilinear Forms on a Normed Space $\mathbb{R}^m$». Український математичний журнал, вип. 76, вип. 6, Липень 2024, с. 855–863, doi:10.3842/umzh.v76i5.7476.
Розділ
Статті