Existence and multiplicity of solutions for a class of Hamiltonian systems

  • Khaled Khachnaoui Department of Mathematics, University of Kairouan, Preparatory Institute for Engineering Studies, Tunisia

Анотація

УДК 517.9

Існування та множинність розв’язків для одного класу гамільтонових систем

Mи досліджуємо клас гамільтонoвих систем \begin{gather} {-q''}(t)+(L(t)-\xi)q(t)= a(t)|q(t)|^{p-2}q(t)+\eta f(t), \\ q\in H^1(\mathbb{R},\mathbb{R}^N),\end{gather} де $(t,q)\in \mathbb{R}\times \mathbb{R}^N$, $p>2,$ $a\inC(\mathbb{R},(0,+\infty)),$ $f\in C(\mathbb{R},\mathbb{R}^N),$ $\xi$ та $\eta$ --- дійсні параметри і$L\in C(\mathbb{R},\mathbb{R}^{N^2})$ — додатно визначена симетрична матриця для всіх $t\in \mathbb{R}.$ Основний технічний підхід базується на методі многовиду Нехарі спільно з варіаційними і топологічними методами. Отримані результати розширюють і доповнюють результати, доступні в літературі.

Посилання

A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349–381 (1973). DOI: https://doi.org/10.1016/0022-1236(73)90051-7

A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations II: a generalized Nehari manifold approach, Discrete and Contin. Dyn. Syst., 19, № 2, 419–430 (2007). DOI: https://doi.org/10.3934/dcds.2007.19.419

A. Benhassine, Multiple of homoclinic solutions for a perturbed dynamical systems with combined nonlinearities, Mediterr. J. Math., 14, 132 (2017). DOI: https://doi.org/10.1007/s00009-017-0930-x

C. O. Alves, P. C. Carrião, O. H. Miyagaki, Existence of homoclinic orbits for asymptotically periodic systems involving Duffing-like equation, Appl. Math. Lett., 16, 639–642 (2003). DOI: https://doi.org/10.1016/S0893-9659(03)00059-4

H. Berestycki, I. Capuzzo Dolcetta, L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems, Nonlinear Different. Equat. and Appl., 2, 553–572 (1995). DOI: https://doi.org/10.1007/BF01210623

G. Liu, Periodic solutions of second order Hamiltonian systems with nonlinearity of general linear growth, Electron. J. Qual. Theory Different. Equat., 27, 1–19 (2021). DOI: https://doi.org/10.14232/ejqtde.2021.1.27

I. Ekeland, On the variational principle, Math. Anal. and Appl., 17, 324–353 (1974). DOI: https://doi.org/10.1016/0022-247X(74)90025-0

J. Mawhin, M. Willem, Critical point theory and Hamiltonian systems, Springer-Verlag, New York (1989). DOI: https://doi.org/10.1007/978-1-4757-2061-7

K. C. Chang, Methods in nonlinear analysis, Springer Monogr. Math., Springer, Berlin (2005).

K. Khachnaoui, Homoclinic orbits for damped vibration systems with small forcing terms, Nonlinear Dyn. and Syst. Theory, 18, № 1, 80–91 (2018).

K. J. Brown, The Nehari manifold for a semilinear elliptic equation involving a sublinear term, Calc. Var., 22, 483–494 (2005). DOI: https://doi.org/10.1007/s00526-004-0289-2

K. J. Brown, Y. Zhang, The Nehari manifold for a semilinear elliptic problem with a sign changing weight function, J. Different. Equat., 193, 481–499 (2003). DOI: https://doi.org/10.1016/S0022-0396(03)00121-9

K. Khachnaoui, New results on periodic solutions for second order damped vibration systems, Ric. Mat. (2021).

M. Izydorek, J. Janczewska, Homoclinic solutions for a class of the second order Hamiltonian systems, J. Different. Equat., 219, № 2, 375–389 (2005). DOI: https://doi.org/10.1016/j.jde.2005.06.029

M. Izydorek, J. Janczewska, Homoclinic solutions for nonautonomous second order Hamiltonian systems with a coercive potential, J. Math. Anal. and Appl., 335, 1119–1127 (2007). DOI: https://doi.org/10.1016/j.jmaa.2007.02.038

M. Willem, Minimax theorems, Birkhäuser, Boston (1996). DOI: https://doi.org/10.1007/978-1-4612-4146-1

M. R. Heidari Tavani, Existence results for a class of $p$-Hamiltonian systems, J. Math. Ext., 15, № 2 (4), 1–15 (2021).

P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Reg. Conf. Ser. Math., vol. 65, Amer. Math. Soc., Providence (1986). DOI: https://doi.org/10.1090/cbms/065

T. F. Wu, On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function, J. Math. Anal. and Appl., 318, 253–270 (2006). DOI: https://doi.org/10.1016/j.jmaa.2005.05.057

T. F. Wu, Multiplicity results for a semilinear elliptic equation involving sign-changing weight function, Rocky Mountain J. Math., 39 (2009). DOI: https://doi.org/10.1216/RMJ-2009-39-3-995

V. Coti Zelati, P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing super-quadratic potentials, J. Amer. Math. Soc., 4, № 4, 693–727 (1991). DOI: https://doi.org/10.1090/S0894-0347-1991-1119200-3

Z. Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc., 95, 101–123 (1960). DOI: https://doi.org/10.1090/S0002-9947-1960-0111898-8

Z. Liu, S. Guo, Z. Zhang, Homoclinic orbits for the second-order Hamiltonian systems, Nonlinear Anal., Real World Appl., 36, 116–138 (2017). DOI: https://doi.org/10.1016/j.nonrwa.2016.12.006

Опубліковано
03.07.2024
Як цитувати
KhachnaouiK. «Existence and Multiplicity of Solutions for a Class of Hamiltonian Systems». Український математичний журнал, вип. 76, вип. 6, Липень 2024, с. 915–930, doi:10.3842/umzh.v76i5.7497.
Розділ
Статті