Multiple fast homoclinic solutions for a class of second-order differential systems with $p$-Laplacian

  • Wafa Selmi Department of Mathematics, Faculty of Sciences of Monastir, Tunisia

Анотація

УДК 517.9

Множинні швидкі гомоклінні розв'язки для класу диференціальних систем другого порядку з $p$-Лапласіаном

Досліджено існування множини швидких гомоклінних розв'язків для класу диференціальних систем другого порядку з $p$-лапласіаном за допомогою мінімаксних методів у теорії критичних точок. 

Посилання

R. P. Agrawal, P. Chen, X. Tang, Fast homoclinic solutions for a class of damped vibration problems, Appl. Math. and Comput., 219, Go53-Go65 (2013).

P. Chen, X. H. Tang, Fast homoclinic solutions for a class of damped vibration problems with sub-quadratic potentials, Math. Nachr., 286, № 1, 4-16 (2013). DOI: https://doi.org/10.1002/mana.201100287

V. Coti-Zelati, P. H. Rabinowitz, Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials, J. Amer. Math. Soc., 4, № 4, 693-724 (1991). DOI: https://doi.org/10.2307/2939286

Y. H. Ding, Existence and multiplicity results for homoclinic solutions for a class of Hamiltonian systems, Nonlinear Anal., 25, 1095-1113 (1995). DOI: https://doi.org/10.1016/0362-546X(94)00229-B

Y. H. Ding, C. Lee, Homoclinics for asymptotically quadratic and superquadratic Hamiltonian systems, Nonlinear Anal., 71, № 5-6, 1395-1413 (2009). DOI: https://doi.org/10.1016/j.na.2008.10.116

M. Izydorek, J. Janczewska, Homoclinic solutions for a class of second order Hamiltonian systems, J. Different. Equat., 219, 375-389 (2005). DOI: https://doi.org/10.1016/j.jde.2005.06.029

W. Jiang, Q. Zhang, Multiple homoclinic solutions for superquadratic Hamiltonian systems, Electron. J. Different. Equat., 2016, № 66, 1-12 (2016).

F. Khelifi, M. Timoumi, Even homoclinic orbits for a class of damped vibration systems, Indag. Math., 28, 1111-1125 (2017). DOI: https://doi.org/10.1016/j.indag.2017.08.002

X. Y. Lin, X. H. Tang, Infinitely many homoclinic orbits of second-order $p$-Laplacian systems, Taiwan. J. Math., 17, № 4, 1371-1393 (2013). DOI: https://doi.org/10.11650/tjm.17.2013.2518

S. P. Lu, Homoclinic solutions for a nonlinear second order differential system with $p$-Laplacian operator, Nonlinear Anal., 12, № 1, 525-534 (2011). DOI: https://doi.org/10.1016/j.nonrwa.2010.06.037

X. Lv, S. P. Lu, Homoclinic solutions for ordinary $p$-Laplacian systems, Appl. Math. and Comput., 218, № 9, 5682-5692 (2012). DOI: https://doi.org/10.1016/j.amc.2011.11.065

P. H. Rabinowitz, Homoclinic orbits for a class of Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A, 114, 33-38 (1990). DOI: https://doi.org/10.1017/S0308210500024240

P. H. Rabinowitz, K. Tanaka, Some results on connecting orbits for a class of Hamiltonian systems, Math. Z., 206, 473-499 (1990). DOI: https://doi.org/10.1007/BF02571356

X. B. Shi, Q. F. Zhang, Q. M. Zhang, Existence of homoclinic orbits for a class of $p$-Laplacian systems in a weighted Sobolev space, Bound. Value Probl., 2013, Article 137 (2013). DOI: https://doi.org/10.1186/1687-2770-2013-137

X. H. Tang, Infinitely many homoclinic solutions for second-order Hamiltonian systems, Math. Nachr., 289, № 1, 116-127 (2016). DOI: https://doi.org/10.1002/mana.201200253

L. L. Wan, C. L. Tang, Existence and multiplicity of homoclinic orbits for second order Hamiltonian systems without (AR) condition, Discrete and Contin. Dyn. Syst. Ser. B, 15, № 1, 255-271 (2011). DOI: https://doi.org/10.3934/dcdsb.2011.15.255

D. L. Wu, X. P Wu, C. L Tang, Subharmonic and homoclinic solutions for second order Hamiltonian systems with new superquadratic conditions, cloos solutions, Fractals (2015).

X. H. Tang, Li Xiao, Homoclinic solutions for ordinary $p$-Laplacian systems with a coercive potential, Nonlinear Anal., 71, № 3-4, 1124-1133 (2009). DOI: https://doi.org/10.1016/j.na.2008.11.027

Q. F. Zhang, X. H. Tang, Existence of homoclinic orbits for a class of asymptotically $p$-Laplacian a periodic $p$-Laplacian systems, Appl. Math. and Comput., 2018, № 13, 7164-7173 (2012). DOI: https://doi.org/10.1016/j.amc.2011.12.084

M. Timoumi, Existence and multiplicity of fast homoclinic solutions for a class of damped vibration problems, J. Nonlinear Fund. Anal., 2016, Article ID9 (2016).

M. Timoumi, Ground state homoclinic orbits of a class of superquadratic damped vibration problems, Comm. Optim. Theory, 2017, Article ID29 (2017). DOI: https://doi.org/10.23952/cot.2017.29

M. Timoumi, Infinitely many fast homoclinic solutions for damped vibration systems with locally defined potentials, Comm. Optim. Theory, 2018, Article ID 20 (2018).

M. Timoumi, On ground-state homoclinic orbits of class of superquadratic damped vibration systems, Mediterr. J. Math., 1-20 (2018). DOI: https://doi.org/10.1007/s00009-018-1097-9

S. Tersian, On symmetric positive homoclinic solutions of semilinear $p$-Laplacian differential equations, Bound. Value Probl., 2012, Article 121 (2012). DOI: https://doi.org/10.1186/1687-2770-2012-121

R. Yuan, Z. Zhang, Fast homoclinic solutions for some second order non-autonomous systems, J. Math. Anal., 376, 51-63 (2011). DOI: https://doi.org/10.1016/j.jmaa.2010.11.034

Z. Zhang, R. Yuan, Homoclinic solutions for $p$-Laplacian Hamiltonian systems with combined nonlinearities, Qual. Theory Dyn. Syst.; DOI 10. 1007 1-2346-016-0219-7(2016).

J. Yuang, F. B. Zhao, Infinitely many homoclinic orbits for the second order Hamiltonian systems with superquadratic potentials, Nonlinear Anal., 10, 1417-1423 (2009). DOI: https://doi.org/10.1016/j.nonrwa.2008.01.013

Z. Zhang, Existence of homoclinic solutions for second order Hamiltonian systems with general potentials, J. Appl. Math. and Comput., 44, 263-272 (2014). DOI: https://doi.org/10.1007/s12190-013-0692-y

Опубліковано
30.09.2024
Як цитувати
SelmiW. «Multiple Fast Homoclinic Solutions for a Class of Second-Order Differential Systems With $p$-Laplacian». Український математичний журнал, вип. 76, вип. 9, Вересень 2024, с. 1383 -94, doi:10.3842/umzh.v76i9.7643.
Розділ
Статті