Generalization of some integral inequalities in multiplicative calculus with their computational analysis

  • Abdul Mateen Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, China
  • Zhiyue Zhang Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, China
  • Muhammad Aamir Ali Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, China
  • Michal Fečkan Department of Mathematical Analysis and Numerical Analysis, Comenius University in Bratislava, Slovakia, and Institute of Mathematics, Slovak Academy of Sciences, Bratislava, Slovakia

Анотація

УДК 517.9

Узагальнення деяких інтегральних нерівностей в мультиплікативному численні та їх обчислювальний аналіз

Розглянуто узагальнення деяких мультиплікативних інтегральних нерівностей для двічі диференційовних функцій. Спочатку виведено мультиплікативну інтегральну тотожність для мультиплікативно двічі диференційовних функцій. Потім за допомогою інтегральної тотожності доведено серію інтегральних нерівностей, таких як нерівності типу Сімпсона, Ерміта–Адамара, середньої точки, трапеції та Буллена для мультиплікативно опуклих функцій. Крім того, наведено деякі числові приклади та чисельний аналіз цих вперше встановлених нерівностей, щоб довести справедливість результатів для мультиплікативно опуклих функцій. Узагальнені форми, отримані в цій роботі, є цінними інструментами для дослідників у різних областях.

Посилання

H. Budak, T. Tunç, M. Z. Sarikaya, Fractional Hermite–Hadamard type inequalities for interval valued functions, PanAmer. Math. Soc., 148, 705–718 (2020). DOI: https://doi.org/10.1090/proc/14741

Y. L. Daletskii, N. I. Teterina, Multiplicative stochastic integrals, Uspekhi Mat. Nauk, 27, № 2, 167–168 (1972).

M. A. Ali, H. Budak, M. Z. Sarikaya, Z. Zhang, Ostrowski and Simpson type inequalities for multiplicative integrals, Proyecciones, 40, 743–763 (2021). DOI: https://doi.org/10.22199/issn.0717-6279-4136

A. E. Bashirov, M. Riza, On complex multiplicative differentiation, TWMS J. Appl. and Eng. Math., 1, № 1, 75–85 (2011).

S. Özcan, Some integral inequalities of Hermite–Hadamard type for multiplicatively, $s$-preinvex functions, Int. J. Math. Model. Comput., 9, 253–266 (2019). DOI: https://doi.org/10.17714/gumusfenbil.664386

S. Özcan, Hermite–Hadamard type inequalities for multiplicatively, $h$-preinvex functions, Turk. J. Math., 9, 65–70 (2021). DOI: https://doi.org/10.12691/tjant-9-3-5

J. de la Cal, J. Carcamob, L. Escauriaza, A general multidimensional Hermite–Hadamard type inequality, J. Math. Anal. and Appl., 356, 659–663 (2009). DOI: https://doi.org/10.1016/j.jmaa.2009.03.044

S. Chasreechai, M. A. Ali, S. Naowarat, T. Sitthiwirattham, K. Nonlaopon, On some Simpson's and Newton's type inequalities in multiplicative calculus with applications, AIMS Math. (2022). DOI: https://doi.org/10.3934/math.2023193

S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite–Hadamard inequalities and applications, RGMIA Monographs, Victoria University (2000).

S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11, 91–95 (1998). DOI: https://doi.org/10.1016/S0893-9659(98)00086-X

M. A. Ali, M. Abbas, A. A. Zafar, On some Hermite–Hadamard integral inequalities in multiplicative calculus, J.~Inequal. and Spec. Funct., 10, 111–122 (2019).

M. Z. Sarikaya, A. Saglam, H. Yildirim, New inequalities of Hermite–Hadamard type for functions whose second derivatives absolute values are convex and quasi-convex, Int. J. Open Problems Comput. Math., 5 (2012). DOI: https://doi.org/10.12816/0006114

U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula, Appl. Math. and Comput., 147, 137–146 (2004). DOI: https://doi.org/10.1016/S0096-3003(02)00657-4

V. G. Mihesan, A generalization of convexity, in: Proceedings of the Seminar on Functional Equations, Approximation and Convexity, Cluj-Napoca, Romania (1993).

S. Khan, H. Budak, On midpoint and trapezoidal type inequalities for multiplicative integral, Mathematica, 59, 124–133 (2017).

B. G. Pachpatte, On some inequalities for convex functions, RGMIA Research Report Collection, 6, 1–9 (2003).

S. Özcan, Hermite–Hadamard type inequalities for multiplicatively, $s$-convex functions, Cumhuriyet Sci. J., 41, 245–259 (2020). DOI: https://doi.org/10.17776/csj.663559

A. Özyapici, E. Misirli, Exponential approximation on multiplicative calculus, 6th ISAAC Congress (2007).

M. Z. Sarikaya, N. Aktan, On the generalization of some integral inequalities and their applications, Math. Comput. Model., 54, 2175–2182 (2011). DOI: https://doi.org/10.1016/j.mcm.2011.05.026

Y. Zhang, J. Wang, On some new Hermite–Hadamard inequalities involving Riemann–Liouville fractional integrals, J. Inequal. and Appl., 220, 1–27 (2013). DOI: https://doi.org/10.1186/1029-242X-2013-220

Y. M. Bai, F. Qi, Some integral inequalities of the Hermite–Hadamard type for $log$-convex functions on co-ordinates, J. Nonlinear Sci., 9, 5900–5908 (2016). DOI: https://doi.org/10.22436/jnsa.009.12.01

S. S. Dragomir, Further inequalities for $log$-convex functions related to Hermite–Hadamard result, Proyecciones (Antofagasta), 38, 267–293 (2019). DOI: https://doi.org/10.4067/S0716-09172019000200267

E. Set, M. A. Ardiç, Inequalities for $log$-convex functions and $p$-function, Miskolc Math. Notes, 18, 1033–1041 (2017). DOI: https://doi.org/10.18514/MMN.2017.1798

X. M. Zhang, W. D. Jiang, Some properties of $log$-convex function and applications for the exponential function, Comput. Math. Appl., 63, 1111–1116 (2012). DOI: https://doi.org/10.1016/j.camwa.2011.12.019

M. Bakherad, M. Kian, M. Krnic, S. A. Ahmadi, Interpolating Jensen-type operator inequalities for $log$-convex and superquadratic functions, Filomat, 13, 4523–4535 (2018). DOI: https://doi.org/10.2298/FIL1813523B

M. A. Noor, K. I. Noor, S. Iftikhar, C. Ionescu, Some integral inequalities for product of harmonic $log$-convex functions, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 78, 11–20 (2016).

C. P. Niculesau, The Hermite–Hadamard inequality for $log $-convex functions, Nonlinear Anal., 75, 662–669 (2012). DOI: https://doi.org/10.1016/j.na.2011.08.066

B. Y. Xi, F. Qi, Some integral inequalities of Hermite–Hadamard type for $s$-logarithmically convex functions, Acta Math. Sci. Ser. B (Engl. Ed.), 35, 515–526 (2015).

G. S. Yang, K. L. Tseng, H. T. Wang, A note on integral inequalities of Hadamard type for $log $-convex and $log $-concave functions, Taiwan. J. Math., 16, 479–496 (2012). DOI: https://doi.org/10.11650/twjm/1500406596

A. E. Bashirov, E. M. Kurpınar, A. Özyapıcı, Multiplicative calculus and its applications, J. Math. Anal. and Appl., 337, 36–48 (2008). DOI: https://doi.org/10.1016/j.jmaa.2007.03.081

M. A. Ali, M. Abbas, Z. Zhang, I. B. Sial, R. Arif, On integral inequalities for product and quotient of two multiplicatively convex functions, Asian Res. J. Math., 12, 1–11 (2019). DOI: https://doi.org/10.9734/arjom/2019/v12i330084

Опубліковано
31.10.2024
Як цитувати
Mateen, A., Z. Zhang, M. A. Ali, і M. Fečkan. «Generalization of Some Integral Inequalities in Multiplicative Calculus With Their Computational Analysis». Український математичний журнал, вип. 76, вип. 10, Жовтень 2024, с. 1480 -96, doi:10.3842/umzh.v76i10.7765.
Розділ
Статті