Domination number on an octagonal chain and an octagonal grid

  • Miroslava Mihajlov Carević Faculty of Mathematics and Computer Science, Alfa BK University, Beograd, Serbia

Анотація

УДК 519.1

Число домінування на восьмикутному ланцюжку та восьмикутній сітці

Домінування графа та топологічні індекси є важливими темами в теорії графів. Mи аналізуємо проблему $k$-домінування, $k\in\{1,2,3\}$, на восьмикутних ланцюгах і восьмикутній сітці. Визначено мінімальні $k$-домінуючі множини та $k$-домінування чисел для ланцюжка восьмикутників, що мають дві спільні вершини. Використовуючи отримані результати, ми визначаємо числа $k$-домінування для сітки восьмикутників $O_{mxn},$ де $m,n\in N$.

Посилання

A. T. Balaban, Applications of graph theory in chemistry, J. Chem. Inform. and Comput. Sci., 25, № 3, 334–343 (1985); https://doi.org/10.1021/ci00047a033. DOI: https://doi.org/10.1021/ci00047a033

M. F. Nadeem, S. Zafar, Z. Zahid, On certain topological indices of the line graph of subdivision graphs, Appl. Math. and Comput., 271, 790–794 (2015); https://doi.org/10.1016/j.amc.2015.09.061. DOI: https://doi.org/10.1016/j.amc.2015.09.061

J. Lu, L. Zhu, W. Gao, Remarks on bipolar cubic fuzzy graphs and its chemical applications, Int. J. Math. and Comput. Engrg, 1, № 1, 1–9 (2023); https://doi.org/10.2478/ijmce-2023-0001. DOI: https://doi.org/10.2478/ijmce-2023-0001

A. Q. Baig, M. Naeem, W. Gao, Revan and hyper-Revan indices of octahedral and icosahedral networks, Appl. Math. and Nonlinear Sci., 3, № 1, 33–40 (2018); https://doi.org/10.21042/AMNS.2018.1.00004. DOI: https://doi.org/10.21042/AMNS.2018.1.00004

S. Gupta, M. Singh, A. K. Madan, Applications of graph theory: relationship of molecular connectivity index and atomic molecular connectivity index with anti-HSV activity, J. Molecular Structure: THEOCHEM, 147–152 (2001); https://doi.org/10.1016/S0166-1280(01)00560-7. DOI: https://doi.org/10.1016/S0166-1280(01)00560-7

S. Gupta, M. Singh, A. K. Madan, Application of graph theory: relationship of eccentric connectivity index and Wiener’s index with anti-inflammatory activity, J. Math. Anal. and Appl., 259–268 (2002); https://doi.org/10.1006/jmaa.2000.7243. DOI: https://doi.org/10.1006/jmaa.2000.7243

A. H. Ahmed, A. Alwardi, M. R. Salestina, On domination topological indices of graphs, Int. J. Anal. and Appl., 19, № 1, 47–64 (2021); https://doi.org/10.28924/2291-8639-19-2021-47. DOI: https://doi.org/10.28924/2291-8639-19-2021-47

K. Husimi, Note on Mayers’ theory of cluster integrals, J. Chem. Phys., 18, № 5, 682–684 (1950); https://doi.org/10.1063/1.1747725. DOI: https://doi.org/10.1063/1.1747725

R. J. Riddell, Contributions to the theory of condensation, Ph. D. Thesis, Univ. Michigan, Ann Arbor (1951); Google Scholar.

B. Zmazek, J. Žerovnik, Computing the weighted Wiener and Szeged number on weighted cactus graphs in linear time, Croat. Chem. Acta, 137–143 (2003); https://hrcak.srce.hr/103089.

B. Zmazek, J. Zerovnik, Estimating the traffic on weighted cactus networks in linear time, in: Ninth International Conference on Information Visualisation, London (2005), p. 536–541; https://doi.org/10.1109/IV.2005.48. DOI: https://doi.org/10.1109/IV.2005.48

E. J. Farrell, Matchings in hexagonal cacti, Int. J. Math. and Math. Sci., 321–338 (1987); https://doi.org/10.1155/S0161171287000395. DOI: https://doi.org/10.1155/S0161171287000395

S. Majstorovic, T. Doslic, A. Klobucar, $k$-Domination on hexagonal cactus chains, Kragujevac J. Math., 36, № 2, 335–47 (2012); https://www.researchgate.net/publication/267656812.

M. M. Carević, Domination on cactus chains of pentagons, Vojnotehnički glasnik, 583–597 (2022); http://doi.org/ 10.5937/vojtehg70-36576. DOI: https://doi.org/10.5937/vojtehg70-36576

M. M. Carević, M. Petrović, N. Denić, Dominating sets on the rhomboidal cactus chains and the icosahedral network, 19th International Symposium INFOTEH-JAHORINA, 152–157 (2020); https://infoteh.etf.ues.rs.ba/zbornik/2020/#papers.

D. Vukičević, A. Klobučar, $k$-Dominating sets on linear benzenoids and on the infinite hexagonal grid, Croat. Chem. Acta, 80, № 2, 187–191 (2007); https://hrcak.srce.hr/12849.

A. Klobučar, A. Klobučar, Total and double total domination number on hexagonal grid, Mathematics, 7, № 11, 1110 (2019); https://doi.org/10.3390/math7111110. DOI: https://doi.org/10.3390/math7111110

A. K. Barišic, A. Klobučar, Double total domination number in certain chemical graphs, AIMS Mathematics, 7, № 11, 19629–19640 (2022); https://doi.org/10.3934/math.20221076. DOI: https://doi.org/10.3934/math.20221076

A. K. Barišić, A. Klobučar, Double total domination number on some chemical nanotubes, Kragujevac J. Math., 50, № 3, 415–423 (2026). DOI: https://doi.org/10.46793/KgJMat2603.415B

S. K. Rao, R. Prasad, Impact of 5G technologies on smart city implementation, Wireless Pers Commun., 100, 161–176 (2018); https://doi.org/10.1007/s11277-018-5618-4. DOI: https://doi.org/10.1007/s11277-018-5618-4

A. Gohar, G. Nencioni, The role of 5G technologies in a smart city: the case for intelligent transportation system, Sustainability, 13, 5188 (2021); https://doi.org/10.3390/su13095188. DOI: https://doi.org/10.3390/su13095188

S. Miladić-Tešić, G. Marković, D. Peraković et al., A review of optical networking technologies supporting 5G communication infrastructure, Wireless Netw, 28, 459–467 (2022); https://doi.org/10.1007/s11276-021-02582-6. DOI: https://doi.org/10.1007/s11276-021-02582-6

Z. Raza, M. Imran, Expected values of some molecular descriptors in random cyclooctane chains, Symmetry, 13, № 11, 2197 (2021); https://doi.org/10.3390/sym13112197. DOI: https://doi.org/10.3390/sym13112197

Z. Raza, M. Arockiaraj, M. S. Bataineh, A. Maaran, Cyclooctane chains: mathematical expected values based on atom degree and sum-degree of Zagreb, harmonic, sum-connectivity, and Sombor descriptors, Eur. Phys. J. Spec. Topics, 1–10 (2023); https://doi.org/10.1140/epjs/s11734-023-00809-5. DOI: https://doi.org/10.1140/epjs/s11734-023-00809-5

R. Todeschini, V. Consonni, Handbook of molecular descriptors, John Wiley and Sons (2008); DOI:10.1002/9783527613106. DOI: https://doi.org/10.1002/9783527613106

Опубліковано
28.12.2024
Як цитувати
Mihajlov Carević, M. «Domination Number on an Octagonal Chain and an Octagonal Grid». Український математичний журнал, вип. 76, вип. 12, Грудень 2024, с. 1738–1751, doi:10.3842/umzh.v76i12.7995.
Розділ
Статті